
2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
34

Understanding the Effects of Hypervisor I/O Scheduling
for Virtual Machine Performance Interference

Ziye Yang, Haifeng Fang, Yingjun Wu, Chunqi Li, Bin Zhao
EMC Labs China

{ziye.yang, fang.haifeng, yingjun.wu, chunqi.li, bin.zhao}@emc.com

H. Howie Huang
The George Washington University

{howie}@gwu.edu

Abstract

In virtualized environments, the customers who purchase virtual machines
(VMs) from a third-party cloud would expect that their VMs run in an isolated
manner. However, the performance of a VM can be negatively affected by
co-resident VMs. In this paper, we propose vExplorer, a distributed VM I/O
performance measurement and analysis framework, where one can use a set
of representative I/O operations to identify the I/O scheduling characteristics
within a hypervisor, and potentially leverage this knowledge to carry out I/O
based performance attacks to slow down the execution of the target VMs.
We evaluate our prototype on both Xen and VMware platforms with four
server benchmarks and show that vExplorer is practical and effective. We also
conduct similar tests on Amazon’s EC2 platform and successfully slow down
the performance of target VMs.

1. Introduction

Cloud providers employ virtualization techniques that allow
physical machines to be shared by multiple virtual machines
(VMs) owned by different tenants. While resource sharing
improves hardware utilization and service reliability, this may
also open doors to side channel or performance interference
attacks by malicious tenants. For example, CPU cache based
attack has been studied in cloud environment [1, 2, 3, 4], which
might be mitigated to a lesser degree when each core in new
multi-core CPUs is used exclusively by a single VM (at the cost
of reduced CPU utilization). On the other hand, I/O resources
are mostly shared in virtualized environments, and I/O based
performance attacks remains a great threat, especially for data-
intensive applications [5, 6, 7]. In this paper, we discuss the
possibility of such attacks, and especially focus on the effects
of disk I/O scheduling in a hypervisor for VM performance
interference.

The premise of virtual I/O based attacks is to deploy ma-
licious VMs that are co-located with target VMs and aim to
slow down their performance by over-utilizing the shared I/O
resources. Previous work shows the feasibility of co-locating
VMs on same physical machines in a public cloud [1]. In this
work, we will demonstrate that a well designed measurement
framework can help study virtual I/O scheduling, and such
knowledge can be potentially applied to exploit the usage of
the underlying I/O resources.

Extracting the I/O scheduling knowledge in a hypervisor is
challenging. Generally, hypervisors can be divided into two
classes, i.e., open-source hypervisor (e.g., Xen) and closed-
source hypervisor (e.g., VMware ESX server). For an open-
source hypervisor, while the knowledge of the I/O schedulers is

public, which one is in use is unknown. To address this problem,
we use a gray-box method in our framework to classify the
scheduling algorithm. For a closed-source hypervisor, we use
a black-box analysis to obtain the scheduling properties such as
I/O throughput and latency.

With the knowledge of I/O scheduling algorithm, a malicious
user can intentionally slow down co-located (co-resident) VMs
by launching various attacking workloads. The main feature of
such I/O performance attack is to deploy non-trivial I/O work-
loads and manipulate the shared I/O queues to have an unfair
advantage. Note that space and time locality are the two major
considerations in I/O scheduling schedulers. For example, the
scheduling algorithms (e.g., Deadline, and Completely Fair
Queuing or CFQ) merge the I/O requests that are continuous
in logical block address (LBA) for better space locality, while
other algorithms (e.g., Anticipatory Scheduling or AS [8] and
CFQ too) have a time window to anticipatorily execute the
incoming I/O requests that are adjacent with previous I/O
requests in LBA.

In this work, we design and develop a distributed perfor-
mance measurement and analysis framework, vExplorer, that
allows co-resident VMs to issue a group of I/O workloads to
understand I/O scheduling algorithms in a hypervisor. In partic-
ular, two types of representative workloads are proposed in this
framework: the Prober workload is responsible for identifying
the I/O scheduling characteristics of a hypervisor that include
the algorithm and related properties, and the Attacker workload
can be utilized to form I/O performance attacks, where one
can dynamically configure the I/O workloads with the param-
eters (e.g., percentage of read/write operations) based on the
extracted scheduling knowledge. To summarize, we make the
following contributions in this paper:

∙ We design and develop vExplorer , which can be used to
identify the characteristics of I/O scheduling in a hypervi-
sor. Also, the Prober workloads can be adopted as an I/O
profiling benchmark in virtualized environments.

∙ We discuss the feasibility of VM based I/O performance
attacks through a simple mathematical model, and also
design a set of Attacker workloads that are shown effec-
tive on virtualized platforms such as Xen and VMware.
Furthermore, we conduct the experiments on Amazon
EC2 platform [9], where several VMs are deployed on a
physical host and their virtual disks (local instance store)
are mapped into one local disk. For four benchmarks we

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
35

observe significant performance reduction on target VMs.
The remainder of this paper is organized as follows. Sec-

tion 2 presents the design and implementation of our prototype
system, vExplorer. Section 3 presents the profiling work of I/O
scheduling on both Xen and VMware. Section 4 demonstrates
VM I/O scheduling based attacks with the predefined mathe-
matical model. Section 5 shows a case study of our approach
on Amazon EC2, and Section 6 discusses related work. Finally,
we conclude in Section 7.

2. System Design and Implementation

The challenge of exploring I/O performance attacks is to con-
trol the access patterns of the I/O workloads in various VMs for
extracting the scheduling characteristics of a hypervisor. Fig-
ure 1 shows the architecture of vExplorer system that consists
of distributed I/O controller (DC), I/O measurement daemon
(IMD) and analytical module (AM). When the measurement
begins, the Monitor in the DC interacts with the IMDs within
various VMs and directs each IMD to execute the I/O tasks
generated by the Workload module; then the outputs produced
by each IMD are stored into the Output Container (e.g., a
database); finally the DC delivers the results to the AM for
knowledge extraction. This process can be repeated iteratively
for training and analysis.

Fig. 1. vExplorer System Architecture

2.1. Distributed I/O Controller

The Monitor module is in charge of communicating with
each IMD and dispatching the workloads. At the beginning, it
waits for the registry requests from each IMD. Upon receiving
a registry request, a service process is spawned for information
exchange through the network. When the number of IMDs ex-
ceeds a threshold (e.g., 3), the Monitor starts to dispatch the I/O
tasks to each IMD, where each IMD parses the configuration
and executes the I/O workloads without further interaction with
the monitor. Such approach is suitable for supporting more
concurrent connections from IMDs.

The Workload module generates representative I/O work-
loads in our vExplorer system, where the regular patterns of I/O

workloads are defined through a group of single I/O commands
(IOs), in form of <sequence id, daemon id, launch time,
end time, file info, IO mode, IO offset, IO size> shown in
Table 1.

TABLE 1. IO Description

Sequence id Unique id of the IO in time sequence
Daemon id The execution owner (IMD) of the IO
Launch time The launch time of the IO, controlled by the DC
End time The ending time of the IO, collected by each IMD
File info Target file of the IO, e.g., /dev/sda1
IO mode Operation mode: read or write, sync or non-sync
IO offset The offset of the IO
IO size The I/O size, e.g., 4KB, 8KB and etc.

We also define several typical workload modes that will be
used in our experiments.

∙ Sequential mode. Each program sequentially reads or
writes a target file (i.e., a raw disk device) from the
beginning to end. Furthermore, if each adjacent pair
of IOs (sorted by issuing time) satisfies this formula,
𝐼𝑂𝑗(𝐼𝑂 𝑜𝑓𝑓𝑠𝑒𝑡) = 𝐼𝑂𝑖(𝐼𝑂 𝑜𝑓𝑓𝑠𝑒𝑡) + 𝐼𝑂𝑖(𝐼𝑂 𝑠𝑖𝑧𝑒),
then such workload can be categorized as seq-non-gap

mode, which is designed for verifying the scheduling
optimization for space locality.

∙ Burst mode. Each receiver continually runs a given set of
I/O tasks in a time interval. This mode can be applied to
identify the maximum I/O throughput of the hypervisor.

∙ Random mode. Among a fixed number of I/O commands,
the program randomly reads/writes a target file in a ratio
(ranged from 0% to 100%), and the remaining IOs are
sequential I/O commands. The usage of random mode is
to measure VM I/O latency on different I/O sizes.

2.2. I/O Measurement Daemon

IMD, a daemon running within a VM, is responsible for
interacting with the Monitor and executes dispatched I/O com-
mands. Once an IMD is adopted as a working node by the Mon-
itor, it spawns several IOworkers according to the requirements
from the monitor. For executing IOs at a specified launch time,
two approaches are provided:

∙ Time synchronization. Each VM holding the IMD must
synchronize the time with the DC host through NTP (Net-
work Time Protocol) during the working node registration.

∙ Timer event control. We choose the timer policy pro-
posed in Linux 2.6 due to its flexibility and accuracy,
which will not be affected by the side effects of process
scheduling.

2.3. Analytical Module

This module applies statistical analysis on experimental re-
sults in order to determine the representative I/O workloads and
extract the I/O scheduling knowledge. Generally, I/O perfor-
mance attacks can be carried out through the following three
stages.

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
36

∙ Stage I: Identify the Prober workloads. Each workload se-
lected by the prober must distinguish at least two types of
I/O schedulers, i.e., such workload can differentiate either
the space or time locality of two different schedulers.

∙ Stage II: Extract the scheduling characteristics of the target
hypervisor by utilizing the prober workloads.

∙ Stage III: Identify the Attacker workloads. Here the se-
lected workloads shall leverage the discovered scheduling
knowledge to observe the I/O behaviors of target VMs and
try to reduce their performance by over-utilizing the I/O
resources.

In the following two sections, we will discuss these three
stages in details.

3. Identifying Hypervisor I/O Scheduling

In this section, we focus on the first two stages, Stage I and
II, that aim to determine the Prober workloads and identify the
characteristics of hypervisor disk I/O scheduler. To evaluate our
prototype vExplorer, several experiments are conducted on Xen
and VMware platforms. As Xen is an open-source hypervisor,
the major task is to classify its I/O scheduling algorithm. On
the other hand, our main focus on closed-source VMware
platform is to profile the scheduling properties. Compared with
non-virtualized environment, I/O operations within a VM are
influenced by I/O schedulers in two tiers, i.e., the guest VM
kernel and hypervisor. To precisely extract knowledge of I/O
scheduler in a hypervisor, the influence from the guest VM
kernel must be reduced to a minimum. Thus we use basic FIFO-
like I/O scheduling (i.e., Noop) is selected in guest VMs, and
bypass the file buffer cache through direct I/O.

3.1. Classifying Scheduling Algorithm in Xen

For Xen, we design a set of workloads with seq-non-gap
mode (defined in Section 2), named as Prober-1, which is com-
paratively suitable for classifying the scheduling algorithms.
Currently, our Prober-1 is designed to read a raw hard disk from
low LBA (logical block address) to high LBA. Table 2 lists the
key terms for analyzing the effects after executing the Prober-1
on a virtualized platform.

TABLE 2. Terminologies

IMDN Number of IMDs (VMs) in an experiment
TN Total number of IOs in an experiment
Switch I/O request serving from one VM to another
Service period I/O service for one VM between two switches
TSP Total number of service periods
Cyclic Switch (CS) Regular switches patterns which involve all IMDs
CSN Total number of CS appeared in an experiment
CSF CSF=CSN*IMDN/TN
OPN Number of IOs in a service period
AOPN Average OPN in an experiment, AOP=TN/TSP
SDOP Standard deviation of all OPNs in an experiment
RT(IO SIZE) response time of an IO on IO SIZE
ART(IO SIZE) Average response time of all IOs on an IOSIZE
incART incART = ART(2*IO SIZE)/ART(IO SIZE)
SNR Signal-to-Noise Ratio, SNR=AOP/SDOP

The concept of switch is introduced to measure the frequency
when the hypervisor stops serving I/O requests issued by one
VM and starts to serve I/O requests from another VM. In the
analytical phase, all executed IOs are sorted by the end time
in an ascending order. If the neighboring IOs are issued by
different VMs, it is considered as a switch. A service period
for a VM can be defined as the I/O service time between
two switches. The Cyclic Switch (CS) describes some regular
switch patterns which involves all IMDs. For example, if there
are three IMDs (with id of 0, 1, 2, respectively) and each
issues three commands, the final sequence of the IOs can be
represented by the IMD ids, e.g., 1,0,1,2,1,2,0,2,0. Then a tuple
of (0,1,2) is a CS, a tuple of (1,2,0) is another CS, and in this
case CSN that standards for the total number of cyclic switches
is 2. The CSF is 2/3, which reflects the fairness of hypervisor
I/O scheduler. Further, RT(IO SIZE) describes the I/O response
time of a single IO on IO SIZE, and ART(IO SIZE) represents
the average I/O response time of many IOs on IO SIZE. Last,
incART defines the variation of I/O size on the impacts of ART.

In the following experiments, we deploy the DC on a DC-
Host machine and three IMDs in different domUs (guest VMs)
on a Xen-Host machine, which has Intel Pentium 4 3.2GHz,
4GB RAM, and 250GB 7200RPM SATA disk. We use Xen
version 3.0.1 in the experiments. All three domUs have the
same configuration and each owns a raw disk with 10G size
with “file-typed” mount. In each experiment, every domU is
required to concurrently execute the Prober-1 workload on
this disk. Moreover, we repeat the same experiments under
four different I/O schedulers (i.e., Noop, Deadline, AS, CFQ)
configured in Dom0. To reduce the errors, the Prober-1 with
different configurations of IO size (from 4KB to 1MB) is
executed for at least ten iterations.

Fig. 2. Values of CSF, SNR, ART on four schedulers

Figure 2 shows the statistical value of several items (i.e.
CSF, SNR, ART) from the experiments. The value of CSF on
Deadline, CFQ and Noop lies from 80% to 100% with different
I/O sizes, while AS shows a relatively low value except for
the I/O size of 128KB. This phenomenon shows that Deadline,
CFQ and Noop can provide equal probability to different VMs

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
37

Fig. 3. I/O throughput isolation among equal VMs

for the Prober-1 workload. Meanwhile, Deadline has a large
SNR value which indicates that it provides a stable I/O service
to Prober-1 workload since it has a fixed size of batched FIFO
queue to serve continuous read I/O requests. The ART diagram
describes how the IO SIZE variation changes the value of ART,
and only the value of incART on Noop is close to 2 while
other scheduling algorithms have no such effects. The reason
is that when there are equal I/O requests issued from different
VMs in a period, Noop alternatively serves the requests in FIFO
manner, thus the value of ART nearly doubles when the IO size
doubles, which can help distinguish the Noop scheduler.

I/O scheduling algorithm classifier: The features extracted
in previous experiments can be used to classify the open-source
I/O scheduling algorithms which can be summarized as three
decision rules listed in Table 3. Rule1 examines the CSF value
to verify whether the scheduling method provides VMs with
equal service, then As-like scheduler can be predicted if CSF
is no larger than 𝛼. As Rule2 suggests, if SNR values are
consistently larger than a certain threshold 𝛽, then we can
predict that the hypervisor deploys a Deadline-like scheduler.
Rule3 can check whether Noop-like scheduler is selected. If
none of the three rules is satisfied, then CFQ can be suggested
as the possible scheduling algorithm if there are only four
schedulers. In the case when more than one rule is triggered,
the scheduling algorithm is undetermined. It might indicate that
there exists new scheduling algorithms, and the classification
rules should be retrained and updated.

TABLE 3. Classification Rules

Rule1 IF 𝐶𝑆𝐹 < 𝛼, As-like scheduler.
Rule2 IF 𝑆𝑁𝑅 > 𝛽, Deadline-like scheduler.
Rule3 IF 𝑖𝑛𝑐𝐴𝑅𝑇 ∈ [2− 𝜖, 2 + 𝜖], Noop-like scheduler.

Currently, the summarized three rules are quite useful to
classify the I/O scheduling on Xen platform with four common
I/O schedulers. In practice, We set 𝛽 to 5.0 according to Rose
criterion [10], 𝛼 to 80.0% and 𝜖 to 0.20 empirically. When we
make use of our vExplorer to measure other Xen platforms with
different versions or configurations, it successfully determines
the I/O scheduler.

3.2. Profile I/O Scheduling in VMware

The proposed I/O scheduling algorithm classifier is not suit-
able for the hypervisors with closed-source I/O schedulers.
Here we aim to understand a number of scheduling properties
(e.g., VM I/O throughput, I/O execution latency).The test ma-
chine has Intel Xeon X5355 2.66GHz, 16GB RAM, and 300GB
SCSI disk, and we use VMware ESX 4.0 in the tests.

Profiling on I/O throughput: VM I/O throughput charac-
teristics can be profiled through two aspects: (1) throughput
variation of single VM with co-resident VMs; (2) throughput
isolation among VMs. Here we utilize a new workload, named
Prober-2, which combines both the seq-non-gap and Burst
modes (defined in section 2) to continually read or write the
target files in a fixed interval (e.g., 10 seconds), with each
IO size ranging from 4KB to 1024KB. Figure 3 presents the
performance isolation results among four equal VMs. Clearly,
the performance isolation on ESX for equal VMs is relatively
poor for reads, but nearly perfect for writes.

Profiling on I/O execution latency: We design another
workload (Prober-3), which utilizes the Random mode (defined
in section 2) to continually read or write operations with
random file offsets. Generally, I/O response time (RT) of each
IO is calculated by this formula, i.e, RT(IO)=End time(IO)-
Launch time(IO). For a hypervisor scheduler, RT time of each
IO is composed of the wait time in I/O queues (wait time)
and the real I/O serving time (serve time), i.e., RT(IO)=
wait time(IO) + serve time(IO). Since all IOs are contin-
ually executed in the experiments, the serve time of each
IO𝑖 can be expressed by serve time(IO𝑖)= End time(IO𝑖) -
End time(IO𝑗), IO𝑗 is the latest completed IO before IO𝑖.

Figure 4 and 5 present the I/O RT and serve time variation
of IOs on 128 KB with Random mode issued by a single
VM (target VM) in either single or multi VM environments.
In each diagram, X-axis indicates the proportion of sequential
I/O operations, and different lines represent the number of
peer co-resident VMs in the platform. In Figure 4, we can see
that the sequential proportion greatly affects the RT value of
read I/O operations, i.e., the higher sequential proportion, the
lower value of RT; However, the sequential proportion has no
influence on the RT value of write operations. Moreover, the

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
38

Fig. 4. I/O RT variation(IOSIZE=128KB) of a single VM

Fig. 5. I/O serve time variation(IOSIZE=128KB) of a single VM

RT value for both read and write operations increase when the
number of VMs increase. Except the case when there are two
equal read VMs, the variation of RT has no change.

Figure 5(a) presents the serve time variation of IOs on read
operations. When there is only one target VM, the value of
serve time is really high that indicates that ESX-4.0 only grants
parts of I/O capability to the target VM. When there are more
co-resident VMs, ESX-4.0 has to utilize more capabilities to
serve concurrent IOs from different VMs, so the serve time is
reduced instead. Moreover, the serve time is nearly stable if we
continue increasing the number of VMs, which indicates the
actual capabilities of the underlying hard drivers. Figure 5(b)
presents the serve time variation of IOs on write operations.
When there is only one target VM, the serve time is nearly
stable. But when the number of co-resident VMs increases, the
serve time is unstable and oscillates, which indicates there are
frequent I/O service switch events among the VMs.

In all, we summarize the scheduling properties on VMware
ESX as follows:

Reads. ESX aims to ensure the serve time of each read
operation, however it does not seem to guarantee the throughput
isolation across the VMs. In most cases, the applications in the
VM are expected to immediately consume the results of read
operations, so ensuring the serve time with low VM I/O service
switch is reasonable. Also the RT value of sequential read is
lower than random read which suggests that ESX maintains
caching and prefetching to optimize the read operations.

Writes. ESX aims to guarantee the throughput isolation
among the VMs instead of the serve time of each single IO.
As most write operations are asynchronous I/Os, it seems that
ESX chooses to delay the immediate execution and periodically
flush IOCs to the disk. As a result, the serve time of each IO
varies irregularly. Moreover, the RT value of write operations
seems stable even if sequential write proportion changes, which
incidates that ESX might have no optimization for sequential
write I/O patterns.

4. I/O Scheduling Based Performance Attacks

The vExplorer system can be utilized as an attacker that can
potentially hurt the performance of co-resident VMs. To for-
malize the attack approach, a mathematical model is presented,
and a number of experiments are conducted on both VMware
and Xen.

4.1. Mathematical Model

Suppose that 𝑛 VMs are deployed on a virtualized plat-
form, each VM’s I/O behavior can be expressed by four
features shown in Table 4, denoted as a vector 𝑋⃗ =
{𝑋𝑖𝑜𝑠𝑖𝑧𝑒, 𝑋𝑝𝑟𝑒𝑎𝑑, 𝑋𝑝𝑠𝑒𝑞, 𝑋𝑝𝑏𝑢𝑟𝑠𝑡}. Generally, the throughput
variation of a VM𝑖 (denoted as THR𝑖) in a host is influenced
by its own behavior 𝑋⃗𝑖 and the effects from hypervisor I/O
scheduler, which can be denoted as a function 𝑆. Thus we have
[𝑇𝐻𝑅1, 𝑇𝐻𝑅2, ..., 𝑇𝐻𝑅𝑛] = 𝑆(𝑋⃗1, 𝑋⃗2, ..., 𝑋𝑛). For a VM𝑖,

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
39

Fig. 6. FC and FS on ESX-4.0

if there is no other VMs on the host, 𝑇𝐻𝑅𝑖 = 𝑆(𝑋⃗𝑖). In such
situation, THR𝑖 can be stable if 𝑋⃗𝑖 is fixed in a time period,
which can be denoted as ST(THR𝑖). If the VM performance
isolation is not guaranteed by 𝑆, malicious VMs can adjust their
I/O behaviors (

∑
𝑋⃗) to attack the target VMs.

TABLE 4. VM I/O behavior description

𝑋𝑖𝑜𝑠𝑖𝑧𝑒 IO size of each read/write operation
𝑋𝑝𝑟𝑒𝑎𝑑 Percentage of read operations (%)
𝑋𝑝𝑠𝑒𝑞 Percentage of sequential read/write operations (%)
𝑋𝑝𝑏𝑢𝑟𝑠𝑡 Utilization rate of VM’s maximal IOPS (%)
Workloads 𝐴𝑇𝑇 (𝑋⃗)

We propose to observe a single feature while the other
features are fixed at each time. We study the following two
concepts Feature Contribution (FC) and Feature Sensitivity

(FS):
FC depicts the influence of a single feature (named as

X𝑓) in 𝑋𝑎𝑡𝑡 on THR𝑡𝑎𝑟. Suppose 𝑋𝑡𝑎𝑟 is fixed in a time
period, then with different assignments of X𝑓 , we can ob-
tain the maximal and minimal value of THR𝑡𝑎𝑟, named as
Max(THR𝑡𝑎𝑟) and Min(THR𝑡𝑎𝑟). Thus the contribution of
X𝑓 on FC can be defined as: FC(X𝑓) = (Max(THR𝑡𝑎𝑟) -
Min(THR𝑡𝑎𝑟))/ST(THR𝑡𝑎𝑟). The higher value of FC, the larger
impacts of X𝑓 .

FS describes the influence of X𝑓 in 𝑋𝑎𝑡𝑡 on detecting
the variation of THR𝑡𝑎𝑟. Generally, attacking VMs detect the
variation of THR𝑡𝑎𝑟 by observing their own throughput vari-
ation, THR𝑎𝑡𝑡. Suppose the variation patterns of THR𝑡𝑎𝑟 is
fixed in a time period, we could obtain the Max(THR𝑎𝑡𝑡) and
Min(THR𝑎𝑡𝑡) when there is an assignment on X𝑓 (i.e., X𝑓=a).
Thus the contribution of X𝑓 can de defined as: FS((X𝑓=a))
= (Max(THR𝑎𝑡𝑡) - Min(THR𝑎𝑡𝑡))/ST(THR𝑎𝑡𝑡). Obviously, a
higher value of FS indicates more meaningful observation of
THR𝑡𝑎𝑟, and the assignment that leads to the highest FS can be
considered as an optimal assignment.

We conduct the experiments on VMware ESX with two VMs
deployed on a host, i.e., VM𝑎𝑡𝑡 and VM𝑡𝑎𝑟. We use four differ-
ent benchmarks (FileServer, OLTP, WebServer, Workstation)
described in [11]. As shown in Figure 6(a), the I/O behavior
of VM𝑡𝑎𝑟 is fixed and VM𝑎𝑡𝑡 adjusts the features on four

Fig. 7. Impact of pburst on VMware platform

benchmarks. This indicates that X𝑖𝑜𝑠𝑖𝑧𝑒 has little contribution
on FC, while the remaining features are the key FC if the
threshold is 0.5. Figure 6(b) shows that the value change of
VM𝑎𝑡𝑡’s X𝑝𝑟𝑒𝑎𝑑, X𝑝𝑠𝑒𝑞 and X𝑝𝑏𝑢𝑟𝑠𝑡 on detecting the behavior
of target VM. When X𝑝𝑟𝑒𝑎𝑑 ranges from 40 to 50, X𝑝𝑠𝑒𝑞=0, and
X𝑝𝑏𝑢𝑟𝑠𝑡=100, the observation seems quite effective. Although
some features with little contribution to either FC or FS (e.g.,
X𝑖𝑜𝑠𝑖𝑧𝑒) can be set with random values, it is suggested to be
assigned with some fixed value for lower cost.

4.2. Attacking Target VMs

While the I/O behavior of target VM𝑡𝑎𝑟 is identified, attack-
ing workloads, named as ATT, can be designed for I/O resource
occupation based on FC and the scheduling characteristics
of hypervisor (function S). In the following, some attacking
experiments are done in both VMware and Xen platform to
demonstrate the feasibility of our mathematical model.

VMware ESX: We would like to verify the influence of
X𝑝𝑏𝑢𝑟𝑠𝑡, as it is one of the non-negligible FCs for ESX-4.0.
Thus the malicious VM can use ATT(4KB, 0, 100, X𝑝𝑏𝑢𝑟𝑠𝑡) as
the attacking workload ATT and aim to reduce the throughput of
VM𝑡𝑎𝑟. Here, X𝑖𝑜𝑠𝑖𝑧𝑒 is assigned with 4KB for lower attacking
cost, and X𝑟𝑒𝑎𝑑 and X𝑝𝑠𝑒𝑞 are assigned with 0 and 100.

Figure 7 demonstrates the experiments on ESX. There were
two VMs, the attacking VM (named as VM𝑎𝑡𝑡) performing
the ATT and the VM𝑡𝑎𝑟 running four different benchmarks

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
40

(FileServer, OLTP, WebServer, Workstation). In the diagram,
X-axis describes the X𝑝𝑏𝑢𝑟𝑠𝑡 variation of VM𝑎𝑡𝑡 and Y-axis
represents the IOPS variation of VM𝑡𝑎𝑟 in percentage. When
X𝑝𝑏𝑢𝑟𝑠𝑡 increases, VM𝑡𝑎𝑟’s I/O throughput demonstrates a de-
creasing trend, which indicates that value change of X𝑝𝑏𝑢𝑟𝑠𝑡 can
influence the I/O behaviors of VM𝑡𝑎𝑟 in a fine-grained way.

Xen: As we can classify the I/O scheduler on Xen platform,
customized ATT can be designed for different I/O scheduling
algorithms (Noop, Deadline, CFQ, AS) based on their unique
characteristics. To understand the effects of four different pa-
rameters, i.e., X𝑝𝑏𝑢𝑟𝑠𝑡, X𝑖𝑜𝑠𝑖𝑧𝑒, X𝑟𝑒𝑎𝑑, and X𝑝𝑠𝑒𝑞 , we conduct
several experiments on Xen and conclude the following rules:

∙ X𝑖𝑜𝑠𝑖𝑧𝑒 has nearly no effects on resource utilization on
four I/O schedulers.

∙ X𝑝𝑟𝑒𝑎𝑑 only has significant effects on AS. The appropriate
selection of X𝑝𝑟𝑒𝑎𝑑 is important for throughput influence
on target VM, e.g., X𝑝𝑠𝑒𝑞 ranging from 20% to 40% is
recommended.

∙ X𝑝𝑠𝑒𝑞 plays little contribution on throughput influence for
CFQ and AS. However for Noop and Deadline, X𝑝𝑠𝑒𝑞 can
be set to 100 - 𝜉 (𝜉 > 0) , which may have large impacts
on resource consumption.

∙ X𝑝𝑏𝑢𝑟𝑠𝑡 is effective on all schedulers. As the value of
X𝑝𝑏𝑢𝑟𝑠𝑡 increases, the performance interference can be en-
hanced.For the AS scheduler, the maximal value X𝑝𝑏𝑢𝑟𝑠𝑡

on read I/O attacks can be set with 100 - 𝜖 (𝜖 > 0), since
AS has an anticipatory execution time window (e.g., 7ms)
for the next read operations issued by the same process.

5. Case Study: Experiments on a Public Cloud

To verify the practicality of our approach, we deploy vEx-
plorer on Amazon EC2 platform in Singapore. As perviously
described, the successful VM I/O based performance attacks
are relied on two conditions: (1) VM co-residence and (2) I/O
scheduling knowledge of the underlying hypervisor.

5.1. Hypervisor I/O Scheduler Identification

With the technique described in [1], we deploy four VMs
using Amazon m1.small instances with 1ECPU and 1.7GB
RAM. The goal is to differentiate the I/O scheduling algorithms
on Amazon’s Xen platform and three of them are co-resident in
the same host. In each IMD VM, Prober-1 workload is operated
on its virtual disk “/dev/sdb”. However, such experiment on
Amazon is slightly different with the one on local Xen platform
in two aspects: (1) There may exist co-resident VMs owned
by other tenants which may influence the profiling work for
hypervisor I/O scheduler; and (2) The virtual disks operated by
the three co-resident VMs in the same host may not be mapped
into the same physical disk.

The first issue is not difficult to solve. We can detect the
existence of other storage co-resident VMs before each exper-
iment through the workloads guided by FS (defined in 4.1)
and select a time period that when other VMs are relatively
idle. However, the second issue is very challenging. If the

virtual disk operated by the three VMs are located into different
disks which means non-sharing of I/O resource, then Prober-1
workloads will have limited impacts. In the tests, we find that
the virtual disk (/dev/sdb) of two VMs are most likely mapped
into a physical disk.Thus only two VMs (VM𝐴 and VM𝐵) are
available to perform the probing work of hypervisor disk I/O
scheduler.

Table 5 shows the testing results of prober-1 on VM𝐴 and
VM𝐵 . Obviously, the value of CSF is consistently equal to
100% when there are two VMs, so Rule1 (described in Sec-
tion 3.1) can never be used. All values of SNR is less than 5, so
Deadline-like scheduler can be excluded. All values of incART
are ranged from 1.5 to 2, so it is not Noop-like scheduler
according to Rule3 if 𝜖 is set to 0.2. But when the 𝜖 is configured
to 0.5, it is Noop-like scheduler. If the I/O scheduler of Amazon
Xen-like hypervisor (i.e., the I/O scheduler in domain0) only
supports four open source algorithms (e.g., Noop, Deadline,
AS, CFQ), the possible schedulers can only be AS, CFQ and
Noop.

TABLE 5. Statistical results on Amazon EC2

I/O size (KB) CSF SNR ART (ms) incART
16 100% 0.35 0.22 N/A
32 100% 0.59 0.33 1.5
64 100% 0.27 0.5 1.52

128 100% 0.63 1.0 2
256 100% 1.04 2.0 2

Derived from Section 4.2, when the pause time ranged from
0 to X ms (e.g., X can be set with 7ms), the attacking effects on
AS scheduler can be the same. Thus we conduct the following
attacking experiment through two VMs, i.e., the VM𝑡𝑎𝑟 is
configured with 𝑋⃗={4KB, 100, 0, 100} and the VM𝑎𝑡𝑡 runs
ATT(4KB, 100, 100, X𝑝𝑏𝑢𝑟𝑠𝑡) on Amazon. Figure 8 shows the
results of X𝑝𝑎𝑢𝑠𝑒 experiment on Amazon, the X-axis describes
the variation of pause time of VM𝑎𝑡𝑡, and the Y-axis shows the
IOPS variation of VM𝑡𝑎𝑟. With the pause time changed from 0
to 25 ms, there is no phenomenon revealing that the attacking
effects are same in a time window. With such experiment, we
can confirm that Amazon’s Xen Hypervisor is not configured
with AS scheduling algorithm. With the previous two experi-
ments, it can be deduced that Amazon adopts either Noop or
CFQ scheduler, and it is likely that Amazon uses CFQ instead
of Noop.

5.2. VM-based I/O Performance Attacks on EC2

As we estimate that the I/O scheduler of Amazon’s Xen is
either CFQ or Noop, we conduct the experiments on Amazon
with the variation of X𝑝𝑏𝑢𝑟𝑠𝑡. In our experiments, there are
still two VMs (VM𝑎𝑡𝑡 and VM𝑡𝑎𝑟), i.e., VM𝑎𝑡𝑡 is equipped
with ATT(4KB, 10, 95, X𝑝𝑏𝑢𝑟𝑠𝑡) (according to Section 4.2)
and VM𝑡𝑎𝑟 runs four different benchmarks (FileServer, OLTP,
WebServer, Workstation). In Figure 9, we could see that
VM𝑡𝑎𝑟’s I/O throughput demonstrates a decreasing trend with
the increasing of X𝑝𝑏𝑢𝑟𝑠𝑡 in VM𝑎𝑡𝑡. It demonstrates that our

2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE
41

Fig. 8. Impact of pause on Amazon EC2

Fig. 9. I/O Performance attacks on Amazon EC2

attacking approach remains effective on public cloud. Also if
the target VM is provided with relatively high IOPS, we may
need to launch more attacking VMs instead of only one VM for
performance influence.

6. Related Work

VM I/O performance. Most prior works [12, 13, 14, 15,
16, 17] have focused on I/O scheduling optimization of the
hypervisor to provide better virtual I/O service. [18] aims to
ensure performance fairness among different VMs. The goal
of vExplorer is to extract the characteristics and measure the
quality of I/O scheduling subsystem by designing meaningful
I/O patterns.

VM Security. [1] used network probing in EC2 and was able
to extract the sensitive information from the co-resident VMs
by issuing CPU cache based side channel attacks. To mitigate
such issues, Zhang et al. [2] proposed to reversely use the CPU
cache as a guard, where the tenants can observe CPU cache
usage and detect such attacks. Here we propose a new system,
vExplorer, to detect and influence the behaviors of co-resident
VMs by analyzing disk I/O patterns.

7. Conclusion

This paper presents vExplorer, a distributed I/O performance
measurement system, which can help identify the characteris-
tics of disk I/O scheduler in a hypervisor and conduct I/O based
performance attacks. We conduct a number of experiments

on both Xen and VMware platforms. In addition, we deploy
vExplorer on Amazon EC2 and successfully slow down the
performance of co-resident VMs. We plan to further study VM
vulnerability for I/O based attacks, and study the preventive
methods in future work.

Acknowledgment

The authors thank anonymous reviewers for their helpful
suggestions. This work is in part supported by National Science
Foundation grant OCI-0937875.

References

[1] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of the 16th ACM conference on Computer and
communications security, 2009, pp. 199–212.

[2] Y. Zhang, A. Jules, A. Oprea, and M. K. Reiter, “Homealone: Co-
residency detection in the cloud via side-channel analysis,” in Proceed-
ings of the 2011 IEEE Symposium on Security and Privacy (Oakland),
2011, pp. 313–328.

[3] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing
channels in compute clouds,” in Proceedings of the 2010 ACM workshop
on Cloud computing security workshop, 2010.

[4] T. Kim, M. Peinado, and G. Mainar-Ruiz, “Stealthmem: system-level
protection against cache-based side channel attacks in the cloud,” in
Proceedings of the 21st USENIX conference on Security symposium,
2012.

[5] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing i/o devices
on vmware workstation’s hosted virtual machine monitor,” in Proceedings
of the General Track: 2002 USENIX Annual Technical Conference, 2001,
pp. 1–14.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of the nineteenth ACM symposium on Operating systems
principles, 2003.

[7] R. C. Chiang and H. H. Huang, “TRACON: interference-aware schedul-
ing for data-intensive applications in virtualized environments,” in Pro-
ceedings of 2011 International Conference for High Performance Com-
puting, Networking, Storage and Analysis, 2011.

[8] S. Iyer and P. Druschel, “Anticipatory scheduling: a disk scheduling
framework to overcome deceptive idleness in synchronous i/o,” in Pro-
ceedings of the eighteenth ACM symposium on Operating systems princi-
ples, 2001.

[9] Amazon, “Amazon elastic compute cloud,” http://aws.amazon.com/ec2/.
[10] T. B. Jerrold, E. M. L. J. J. Anthony, Seibert, and M. B. John, The

Essential Physics of Medical Imaging (2nd Edition). Philadelphia:
Lippincott Williams & Wilkins, 2006.

[11] R. Bryant, D. Raddatz, and R. Sunshine, “Penguinometer: a new file-i/o
benchmark for linux,” in Proceedings of the 5th annual Linux Showcase
& Conference - Volume 5, 2001, pp. 10–10.

[12] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling i/o in virtual machine
monitors,” in Proceedings of the fourth ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, 2008.

[13] A. Gulati, A. Merchant, and P. J. Varman, “mclock: handling through-
put variability for hypervisor io scheduling,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation,
2010.

[14] A. Gulati, C. Kumar, and I. Ahmad, “Modeling workloads and devices for
io load balancing in virtualized environments,” SIGMETRICS Perform.
Eval. Rev., vol. 37, January 2010.

[15] M. Kesavan, A. Gavrilovska, and K. Schwan, “On disk i/o scheduling in
virtual machines,” in Proceedings of the 2nd conference on I/O virtual-
ization, 2010.

[16] D. Boutcher and A. Chandra, “Does virtualization make disk scheduling
passé?” SIGOPS Oper. Syst. Rev., vol. 44, March 2010.

[17] S. R. Seelam and P. J. Teller, “Virtual i/o scheduler: a scheduler of
schedulers for performance virtualization,” in Proceedings of the 3rd
international conference on Virtual execution environments, 2007.

[18] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing per-
formance isolation across virtual machines in xen,” in Proceedings of
the ACM/IFIP/USENIX 2006 International Conference on Middleware,
2006.

