
Grand Challenge: SPRINT Stream Processing Engine as a
Solution∗

Yingjun Wu†1, David Maier†‡2, Kian-Lee Tan†3
†School of Computing, National University of Singapore, Singapore 117417

‡Computer Science Department, Portland State University, Portland, OR 92701, USA
{yingjun1, tankl3}@comp.nus.edu.sg, maier@cs.pdx.edu2

ABSTRACT
A stream processing engine, named SPRINT, is designed
and implemented to efficiently process queries over high-
speed sensor data streams from soccer games. SPRINT
adopts several novel strategies, including a lock-free ring
buffer, frame-based sliding windows, and dynamic parallel
computation, to pursue three objectives: high speed, high
precision, and low space consumption. Experiments show
that SPRINT can achieve these three goals simultaneously.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Performance, Experimentation

Keywords
Stream Processing Engine, Complex Events, DEBS Grand
Challenge

1. INTRODUCTION
The DEBS 2013 Grand Challenge provides an opportu-

nity to develop a stream processing engine for high-speed
sensor data analysis in real time. The challenge aims at pro-
cessing multiple queries over high-speed sensor data streams
from a soccer game. Solutions are evaluated from different
perspectives including correctness, throughput, and innova-
tion. To tackle this challenge, we designed and implement-
ed SPRINT, a stream processing engine, to evaluate multi-
ple continuous queries in parallel. Experiments show that

∗This work is funded by the NExT Search Centre (grant R-
252-300-001-490), which is supported by the Singapore Na-
tional Research Foundation under its International Research
Centre @ Singapore Funding Initiative and administered by
the IDM Programme Office.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’13, June 29–July 3, 2013, Arlington, Texas, USA.
Copyright 2013 ACM 978-1-4503-1758-0/13/06 ...$15.00.

Figure 1: Sensor-generated velocity streams.

SPRINT can elegantly handle complex queries while meet-
ing the strict requirements of the challenge.

The paper is organized as follows. Section 2 generally re-
views the problems and requirements proposed in the chal-
lenge and discusses the solution ideas. Section 3 describes
the design and implementation of SPRINT in detail. Sec-
tion 4 analyzes the performance of SPRINT from different
perspectives. We discuss related work and conclude the pa-
per in Section 5 and 6, respectively.

2. PROCESSING CHALLENGE QUERIES
The grand challenge requires us to evaluate four complex

queries online. In this section, we generally describe the key
ideas for solving these queries.

2.1 Query 1: Running Analysis
This query aims calculating instantaneous and aggregated

running statistics for each player. The reported results need
to satisfy two requirements: (1) all required statistics must
be returned as streams at the frequency of at most 50 Hz; (2)
a running-status interval with duration less than one second
should be counted on top of the next intensity.

Sensor-generated instant velocity cannot directly reflect
players’ real running speeds. As stated in the problem de-
scription, each sensor generates streaming data of one leg’s
movement. Although the player’s speed can be calculated
as the average of two sensors, the obtained data are in fac-
t dependent on the player’s stride frequency, making it an

1.0s
1.2s

trot
-

1.0s 1.2s 1.5s 1.6s 2.0s 3.1s

1.0s
1.5s

low
-

1.0s
1.6s

high
-

1.0s
2.0 s

trot
-

1.0s
2.0s

trot
3.1s

Start time

End time

Update time

Status

1.0s
1.0s

low
-

Figure 2: An example of the frame data structure.

unreliable indicator of running speed. Figure 1 illustrates
this problem with two velocity streams generated from sen-
sors with sid = 59 and sid = 28, both associated with the
same player. The upper-half is the original data, and the
lower-half is the corresponding average velocity stream of
the two sensors. The series of dashed lines from bottom
up represent the thresholds for each running status, i.e.,
standing, trot, low, medium, high and sprint. Obvious-
ly, the average velocity stream is not stable enough for re-
liable measurement. SPRINT uses two methods to address
this problem. First, every running status with duration less
than 0.1 second will be removed as noise. Second, addi-
tional cross-status sections are inserted between every two
sibling status pair, i.e., standing-to-trot, trot-to-low, low-to-
medium, medium-to-high, high-to-sprint, in which range the
velocities can be regarded as either status. Consequently,
data dithering can be controlled in a tolerable range, mak-
ing the velocity stream stable.
To generate a reliable measurement, we introduce a special

data structure, called a frame [5], with four fields attached:
start time, update time, end time, and status. Figure 2 il-
lustrates the usage of frames. At first, as a new tuple comes
in, we create a frame with start time and update time com-
taining its timestamp, and status containing its running in-
tensity. The frame remains unchanged until a tuple with
new running intensity is detected. At this time point, if the
difference between the current timestamp and update time
is less than 1 second, then the update time and status fields
are modified to the current timestamp and running inten-
sity. Otherwise, the end time is filled in with the current
timestamp, marking the frame as a reliable measurement,
and the frame is further reported and inserted into a com-
pressed linked list with the update time field omitted. As
an example, the frame in Figure 2 will finally report a 2.1-
second-long trot running status. Obviously, the frame data
structure ensures any reported status is reliable.
In this query, every player has a corresponding linked list

for the purpose of recording the running performance trends.
Figure 3 gives an example of such a compressed linked list.
To aggregate window-range statistics, a pointer is used to
trace through the linked list and accumulate the results.
This kind of linked list is also referred as a frame-based
sliding window, which will be further elaborated in Section 3.

2.2 Query 2: Ball Possession
This query aims at calculating ball-possession percentages

for each player as well as for the whole team. The key point

0.0s
1.3s

standing

1.3s
5.5s
trot

5.5s
6.9s

medium

6.9s
10.0s
trot

10.0s
12.3s

medium

12.3s
14.1s
sprint

14.1s
15.9s
low

15.9s
17.1s
trot

Figure 3: An example of compressed linked list for
each player.

Figure 4: Ball acceleration and velocity. The upper
figure shows the acceleration of the ball, and the
lower figure shows the velocity of the ball at the
same points in time.

is to efficiently detect the ball-hit event, which occurs when
the ball acceleration peaks. Figure 4 shows the change of
ball acceleration and velocity in a certain time interval. As
suggested in the figure, the ball velocity oscillates with a
regular pattern (possibly due to sensor rotation). Once the
ball acceleration peaks, the velocity value changes drastical-
ly. As the changing pattern of ball velocity is more apparent
and robust compared to the ball acceleration, SPRINT im-
plements a velocity-based detection method to monitor the
ball-hit events.

The velocity-based detection of ball-hit events continuous-
ly keeps track of the ball velocity. Once a sudden change in
ball velocity is detected, SPRINT reports a ball-hit event,
and then searches for the player who kicked the ball. Here,
we define the “sudden change” as a change of +5 or -2 speed
units (m/s) in 0.015 second. The player search uses an ap-
proximate nearest-neighbor search method. If no player is
found in a one-meter-radius range, then the ball-hit event
is simply treated as an outlier and discarded. Moreover, we
use the “blind eye”method to improve processing efficiency.
When the ball is kicked, the acceleration and velocity will s-
tay at a high value for a certain time interval before dropping
to normal. Therefore, once the ball-hit event is confirmed,
SPRINT pauses velocity monitoring for 0.5 seconds and re-
sumes it afterwards. All tuples in this half-second interval
are ignored, since they are irrelevant to the event processing.

Similar to Query 1, the window-range statistics are also
held in a frame-based sliding window. However, instead of
maintaining linked lists for both teams, SPRINT only holds

0.0s
10.5s

Team 1

10.5s
22.2s

Team 2

22.2s
39.7s

Team 1

39.7s
42.1s

Team 2

Figure 5: An example of compressed linked list for
each team.

a single list to keep track of the possession-exchange event.
The reason is that the possession lists for two teams can be
serialized, as only one team can hold the possession at any
time. An example of a frame-based sliding window in this
query is illustrated in Figure 5. Obviously, the two teams
control the ball alternately during the game.

2.3 Query 3: Heat Map
This query requires calculating statistics for a heatmap

monitoring players’ position distributions over a group of
equally-sized cells partitioned from the entire field. Output
streams should be generated with different window lengths
for different combinations of parameters: 8 × 13 (a grid of
104 cells), 16 × 25 (800 cells), 32 × 50 (1,600 cells), and
64 × 100 (6,400 cells). A simple solution to this query is
to partition the field into a grid of 6,400 (64 × 100) cells
and store the corresponding data for each player to record
how much time they spend in each cell, since the 6,400 cells
are of the minimum granularity and can easily constitute
the larger granularity cells. In other words, for each player,
an array of 6,400 slots is maintained to record time spent
within certain time intervals at each cell. Obviously, the
output streams for the paramater combinations of 64× 100,
32×50, and 16×25, can be accumulated by summing up the
values from their corresponding smaller-granularity cells.
Obtaining heatmap values for the 8 × 13 combination is

much more difficult, as its corresponding 104 cells cannot
be exactly aligned with the 6,400 lower-granularity cells. To
solve this problem, we store additional cells for the unaligned
part and monitor the time span each player spends in each
of these unaligned cells. When generating the results, data
in corresponding cells are accumulated.
One problem in this query is that keeping track of all 6,400

cells for each player for a long time interval (10 minutes for
example) consumes too much memory resource. Interesting-
ly, this problem can also be solved with frame-based sliding
windows, as described already for the previous two queries.
A linked list is still maintained for each of the players. With-
in each frame, three fields are maintained: the cell ID, the
start time the player enters the cell, and the end time the
player leaves the cell. As most players only move in a certain
small range and are unlikely to run across the whole field,
the linked list for a particular player can be extremely short,
greatly reducing memory consumption.

2.4 Query 4: Shot on Goal
The aim of this query is to detect when a player shoots

the ball in an attempt to score a goal. Apparently, the set of
goal-attempt events is a subset of the set of ball-hit events.
We therefore first detect the ball-hit event with a separate
detector, using the similar method presented in Query 2.
As a result, the detection for a goal attempt will be delayed
until a ball hit is determined. Once a ball hit is confirmed,
we subsequently estimate whether the ball could reach the
baseline within 1.5 seconds from its current position. If pos-

Is ball hit?

Can reach baseline?

Can reach goal area?

Not an attempt

Not an attempt

Not an attempt

An attempt

Figure 6: The procedure of detecting goal attempts.

sible, then further computation estimates the ball’s position
at the exact time that it reaches the baseline, according to
its current velocity and position. If the estimated position
falls into the goal area, the corresponding tuple will be out-
put until another ball hit is detected or the ball leaves the
field. The procedure of detecting goal attempts is shown in
Figure 6.

3. ARCHITECTURE
This section describes the architecture of SPRINT, which

is implemented in C++. To meet the strict requirements
from the grand challenge, SPRINT largely takes advantage
of multi-core techniques for the purpose of processing mul-
tiple queries in parallel. To optimize system performance,
SPRINT adopts several innovative ideas, including a lock-
free ring buffer, frame-based sliding windows, and dynamic
computation method.

As shown in Figure 7, the overall architecture of SPRINT
comprises three main components: preprocessor, shared ring
buffer, and a group of parallel query processors. The prepro-
cessor continuously reads tuples from the input data stream
and feeds the parsed tuples into the shared ring buffer. The
shared ring buffer is used to bridge and synchronize the in-
coming data and the query processing. Four independent
parallel query processors run simultaneously for individual
query tasks.

3.1 Lock-free Ring Buffer
SPRINT adopts the one-producer-multiple-consumer mod-

el to handle the incoming stream data. Traditionally, the
producer-consumer model calls for expensive locking strate-
gies to prevent data race. Instead, SPRINT follows the lock-
free ring buffer model proposed in LMAX Disruptor [1]. The
LMAX-style ring buffer brings two benefits to our SPRINT
system. First, the circular buffer reuses allocated memory
efficiently and thus helps to avoid memory allocation oper-
ations, which could lead to severe overhead in high-speed
stream processing. Second, the lock-free ring buffer adopts
CAS locks, introduced in C++ 11, to eliminate the expense
incurred by traditional locks.

To maximize the memory bandwidth, we also set the mes-
sage size to 4 KB, which is the default page size in most op-
erating systems. The preprocessor (query processors) writes
(reads) a 4 KB message block containing multiple tuples at
one time, instead of writing (reading) tuples one by one. In

Data
Sources

Preprocessor

Inject

Parallel query processors

Figure 7: The architecture of SPRINT system.

this way, the time for memory fetching is minimized, further
improving the system throughput.

3.2 Frame-based Sliding Windows
Generally, stream processing engines need to perform anal-

ysis in a sliding-window manner. One common method to
implement sliding windows is to split the window into equal-
sized subwindows, or named panes [4] [7], and gradually
move the window foward. However, this approach can still
be memory intensive. Consider Query 3. For each of the 16
players, 6,400 cells are maintained for every pane, with slid-
ing interval equivalent to 1 second. Thus, to generate the
aggregated statistics with window size of 10 minutes (600
seconds), 6400× 600× 16 cells should be stored in memory,
which may be unacceptable due to the memory constraints.
To tackle this problem, we employ a new data structure,

called a frame, to greatly reduce memory requirements. Our
key idea is to use a linked list of frames to compress the
content of sliding windows by only tracking state transitions.
Adjacent panes with equal states are merged to eliminate
redundant information. In each frame, we only maintain
three fields for start time, status, and end time to record
the start time and end time of the current state.
To better demonstrate the usage of frame-based sliding

windows, we recall how we use such sliding windows in Query
1. To record the players’ running status, a linked list is s-
tored for each player. At the beginning, the linked list is
empty. Once a reliable measurement is made, we encapsu-
late the measurement in a frame, containing the start time,
end time, and running status, and insert it into the linked
list. The length of the linked list keeps growing until the
earliest frames can be removed. For example, if the largest
window size required is 10 minutes, and the current times-
tamp is 20m 10s, then all frames with end time less than
10m 10s can be dropped.
To strictly meet the required reporting frequency, we can

also set a constraint on the time span of a certain frame,
computed as end time−start time. For example, if we want
to report the instant running intensity with a frequency of 50
Hz, then we can constantly check the equation end time −
start time ≤ 0.02 for every update of the temporal frame.

Start time
End time

trot

Start time'
End time'

trot

Previous
states

Start time
End time'

trot

Previous
states

Figure 8: The merging procedure.

Once the constraint is violated, the frame is reported and an
attempt made to insert it into linked list. If the status field
is exactly the same as the end frame of the linked list, then
the two frames will be merged. Figure 8 illustrates such a
merging procedure.

To report the aggregated statistics for a certain window
interval, we only need to search for the corresponding start-
ing frame and calculate the statistics through the list. Note
that for each query, we only maintain one frame-based slid-
ing window with the size equivalent to the longest required
window range. If three different window-range aggregations
are needed, we then hold three pointers in the sliding win-
dow, indicating the appropriate starting frame for each.

Frame-based sliding windows also work with the other
queries for the purpose of calculating window-range statis-
tics. Note that other fields, such as the update time field in
Query 1, can be included in the frames if necessary.

3.3 Parallel Computation
Our system effectively employs multi-core techniques. We

implement multi-core computation at two different levels:
inter-query and intra-query. At the inter-query level, multi-
core computation helps perform four independent queries
concurrently. It mainly benefits from the lock-free ring buffer
described above, as well as the dynamic computation dis-
cussed later. The intra-query level multi-core computation
speeds up individual query processing by performing inner
jobs in a parallel mode.

In SPRINT, Query 1 and Query 3 are easily parallelized.
Figure 9 illustrates the parallel strategy adopted by SPRINT.
As is shown in the figure, SPRINT follows a partition-and-
merge paradigm to handle intra-query parallel computation.
For Query 1 and Query 3, the input streams can be decom-
posed according to player ID, since the computation for each
player is totally independent. To load-balance the parallel
query threads, each processing thread is associated with an
equal number of players. As the data comes in, each tuple is
mapped to the corresponding processing thread by the job
mapper. The processing thread then computes on-demand
intermediate results. After that, the intermediate results
are sent to a collector, where multiple results are combined
and output streams are generated. Note that Query 3 can
also be decomposed by cells. However, cell-based decompo-
sition could lead to load-imbalance problems, so we do not
incorporate it.

3.4 Dynamic Computation
SPRINT processes four queries in parallel using a global

shared ring buffer. Each query uses its private pointer to
fetch data from the shared ring buffer and then process it.
A data slot is only feed after all four queries have read it.
Consequently, as the processing of these four queries are of
different speeds, the slowest one determines the consumption

Thread 1

Incoming
Stream

Jo
b

m
ap

pe
r

…
…

Collector Output
Stream

Thread 2

Thread 3

Thread 3

Figure 9: Intra-query level multi-core computation.

Shared
Ring

Buffer

Incoming
data

Query
processing

Load shedder
position #1

Load shedder
position #2

Figure 10: Load shedding strategies.

progress of the ring buffer. Given the high data rate, it is
difficult to make the total throughput of four queries match
the incoming data rate with accurate processing of every
input data. Instead, a load shedding strategy is needed to
adaptively match the consumption rate of the shared ring
buffer with the incoming data rate, i.e., query processing
should never block the incoming data due to filling of the
ring buffer. Moreover, load shedding must take the workload
balancing of the four queries into account, since different
queries have different tolerance to load shedding.
The shared ring buffer is the central component for load

shedding. In the architecture of SPRINT, the load shedder
could be placed in two positions: either at the endpoint of
the incoming data or the start point of the queries, as shown
in Figure 10. Based on these possibilities, our load shedding
strategy evolved as follows.
Global shedding. The load shedder is placed in posi-

tion #1 in Figure 10 and controls load shedding by con-
figuring a global shed factor. As long as the ring buffer
is full, indicating congestion, SPRINT increases the global
shed factor to drop a great percentage of the incoming data.
The advantage of global shedding is its easy implementa-
tion. However, it is too crude, as it treats all four queries
collectively as a single black box.
Speeding up the straggler. Instead of treating the

queries as a black box, we open it up and check which query
performs slowest, i.e., is the straggler [6]. The load shedder
is placed in position #2 in Figure 10. Instead of reading
data consecutively, each query skips its read pointer in the
ring buffer to drop some data in order to bridge the rela-
tive processing speed gap with other queries. Each query
owns a shed factor to control the skipping of its read point-
er. When congestion is detected, we check which query is
the straggler, and increase the corresponding shed factor.
This operation continues iteratively until the congestion is
eliminated. Compared with global shedding, this strategy
is more precise, but still treats individual queries as black
boxes.

120

130

140

150

160

170

180

190

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Th
ro

ug
hp

ut
 (t

ho
us

an
d

ev
en

ts
/s

ec
on

d)

Load Shedding Rate

Query 1

Query 2

Query 3

Query 4

Overall

Figure 11: Throughput performance by counting in-
put events.

Shedding based on tolerance. Different queries have
different tolerances for load shedding. Thus we further open
up the black boxes to control the load shedding more intelli-
gently. Each query is configured with a shed tolerance, which
is the maximum shed factor that the query can accept. We
define the tolerance distance to be the difference between
the shed tolerance and the current shed factor. When ring
buffer congestion occurs, we increase the shed factor of a
query with the largest tolerance distance at the time to alle-
viate the congestion. This operation is also done iteratively
until the congestion is eliminated. Consequently, we are able
to minimize the negative side-effects of load shedding. One
remaining issue is that finding a suitable set of shed toler-
ances is nontrivial. In our implementation of SPRINT, we
employ empirically determined values.

4. EVALUATION
In this section, we evaluate the SPRINT system from three

perspectives: throughput, precision, and recall. All the ex-
periments are conducted on a machine with four 2.00 GHz
Intel processors and 2 GB memory. The underlying operat-
ing system is CentOS 5.8. We directly take the raw sensor
dataset as the data stream source.

Throughput. In our experiments, throughput refers to
the number of input events consumed per second. To mea-
sure the throughput of SPRINT, we first run each query
separately to judge single-query performance. Then all the
queries are run simultaneously to test overall system perfor-
mance. The load-shedding rate is set manually and does not
take advantage of the tuning strategy introduced in the pre-
vious section. To minimize the influence of ring-buffer size,
we generate the results only after the throughput value sta-
bilizes, i.e., when the ring buffer can be assumed full. Note
that we have muted all the output information during the
experiments, since the I/O performance can be quite slow
and is usually system dependent.

Figure 11 shows the system throughput as the load-shedding
rate varies. As is illustrated in the figure, the throughput
of Query 4 is much higher than the other three queries, and
remains relatively stable with the variation in load-shedding
rate. The relation is Query 4 does not involve window-range
aggregation operations, and its query logic tends to be quite
simple. The overall throughput turns out to be close to
the single-query throughput, as the performance of multi-
ple queries benefits from the parallel computation strategy.

However, when the load shedding rate goes up, the overall
throughput does not change too much, as parallel computa-
tion also brings synchronization overhead.
Precision and recall. As the ball possession and shot on

goal statistics have already been provided, we can verify the
correctness of Query 2 and Query 4 by comparing our results
with the provided referee events. For Query 2, instead of
evaluating the correctness of ball possession, we measure the
ball-hit events. Table 1 presents the experimental results on
precision and recall for Query 2 and Query 4. The load-
shedding rate is variously set to 0%, 25%, 50%, 75%, and
100%. Obviously, no output is genereated when the load-
shedding rate is set to 100%. As the load-shedding rate
increases, the precision of the results remains high, and the
recall also does not drop much even when the load-shedding
rate reaches 75%. The major reason is that the input data
rate is quite high (2000 Hz for the ball) and load-shedding
does not prevent generating correct results.

Table 1: Experimental results on Queries 2 & 4.
Load-shedding Precision Recall F-Score

Query 2

0% 93.3% 90.8% 92.0%
25% 93.3% 90.8% 92.0%
50% 90.1% 87.9% 88.9%
75% 91.5% 75.1% 82.5%
100% 0.0% 0.0% 0.0%

Query 4

0% 84.2% 79.6% 82.0%
25% 84.2% 79.6% 82.0%
50% 83.3% 72.1% 77.3%
75% 81.8% 62.8% 71.1%
100% N/A 0.0% 0.0%

As a reference, we also list the first 15 ball-hit events de-
tected in Table 2. Note that, as our experiment shows, the
referee events have around 3-5 seconds lag with the events
in the dataset.

Table 2: First 15 ball-hit events.
Estimated Time Reference Time Player

0.01s 4.08s Leo Langhans
2.31s 5.23s Christopher Lee
4.64s 7.46s Vale Reitstetter
9.86s 10.75s Luca Ziegler
12.40s 15.74s Vale Reitstetter
14.40s 17.47s Christopher Lee
17.67s 20.48s Kevin Baer
20.04s 23.07s Christopher Lee
23.05s 25.53s Luca Ziegler
29.04s 33.07s Roman Hartleb
30.01s 34.16s Erik Engelhardt
30.96s 35.00s Roman Hartleb
47.47s 47.08s Christopher Lee
50.21s 52.85s Vale Reitstetter
53.22s 55.61s Christopher Lee

To conclude, we have demonstrated the efficiency and ef-
fectiveness of SPRINT system in performing multiple com-
plex queries in real time.

5. RELATED WORK
High-performace stream-processing systems are attractive

in both academic and industrial communities. Representa-
tive works include Storm [2], a distributed real-time compu-
tation system, and StreamInsight [3], a commercial platfor-
m for complex event processing. These systems are general
purpose but hard to optimize for the queries in DEBS 2013
Grand Challenge, since their underlying components are
highly interdependent. Aiming at high performace, SPRINT
is built from scratch and maximizes the efficiency of queries
via several novel designs as mentioned in Section 3.

6. CONCLUSION
In this paper, we introduced a stream processing engine,

named SPRINT, to tackle the DEBS 2013 Grand Challenge.
SPRINT adopts several novel data structures, including a
lock-free ring buffer and frame-based sliding windows, to e-
valuate the multiple online queries concurrently. The system
can also dynamically tune the load shedding rate to adap-
t to the runtime environment. Experiments showed that
SPRINT can simutaneously achieve the three requirements
of high speed, high precision, and low space consumption.
As future work, we want to further investigate missing-data
problems, which occur quite frequently in sensor-generated
data streams. We are also looking for a novel stream clean-
ing method to better filter out noise. Finally, we plan to up-
grade our SPRINT system to a general distributed stream
processing engine, which could enjoy better generality and
scalability.

7. REFERENCES
[1] Lmax disruptor. https://github.com/lmax-exchange.

[2] Storm. https://github.com/nathanmarz.

[3] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin,
T. Tarnavski, T. Verona, P. Wang, P. Zabback,
A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman,
R. Krishnan, R. Schindlauer, T. Grabs, S. Bjeletich,
B. Chandramouli, J. Goldstein, S. Bhat, Y. Li,
V. Di Nicola, X. Wang, D. Maier, S. Grell, O. Nano,
and I. Santos. Microsoft cep server and online
behavioral targeting. Proc. VLDB Endow.,
2(2):1558–1561, Aug. 2009.

[4] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A.
Tucker. No pane, no gain: efficient evaluation of
sliding-window aggregates over data streams. ACM
SIGMOD Record, 34(1):39–44, 2005.

[5] D. Maier, M. Grossniklaus, S. Moorthy, and K. Tufte.
Capturing episodes: may the frame be with you. In
Proceedings of the 6th ACM International Conference
on Distributed Event-Based Systems, pages 1–11. ACM,
2012.

[6] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, pages 29–42, 2008.

[7] Y. Zhu and D. Shasha. Statstream: Statistical
monitoring of thousands of data streams in real time.
In Proceedings of the 28th International Conference on
Very Large Data Bases, pages 358–369. VLDB
Endowment, 2002.

