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Abstract—We introduce ChronoStream, a distributed system
specifically designed for elastic stateful stream computation in the
cloud. ChronoStream treats internal state as a first-class citizen
and aims at providing flexible elastic support in both vertical
and horizontal dimensions to cope with workload fluctuation and
dynamic resource reclamation. With a clear separation between
application-level computation parallelism and OS-level execution
concurrency, ChronoStream enables transparent dynamic scaling
and failure recovery by eliminating any network I/O and state-
synchronization overhead. Our evaluation on dozens of comput-
ing nodes shows that ChronoStream can scale linearly and achieve
transparent elasticity and high availability without sacrificing
system performance or affecting collocated tenants.

I. INTRODUCTION

Distributed stream-processing systems (DSPSs) have been
widely recognized as first-class citizens in the big-data an-
alytics stack. Unlike large-scale batch-computation systems
such as MapReduce [1], DSPSs support continuous low-
latency complex analytics over massive data streams. Such
online-computation capability is critical to many real-world
applications, including transaction-log processing in financial
markets, topic-trend detection in social media, and malicious-
attack monitoring in telecommunication networks. A large
body of research has designed and developed fault-tolerant
scalable DSPSs for processing big streaming data in real
time [2], [3], [4], [5], [6], [7], [8]. However, as the data-center
environment and online-application requirements continue to
evolve, new challenges have emerged to drive a complete
redesign of DSPSs.

Large-state maintenance. Streaming applications com-
monly require stateful computations such as window oper-
ations and joins. The volume of the internal states manip-
ulated by stateful operators in many real-world scenarios
can expand to the order of hundreds of gigabytes, which
is beyond the memory capacity of single machine or small
computing clusters [9], [10]. Such memory-intensive streaming
tasks require effective distribution of internal states to multiple
nodes, achieving transparent failure recovery without putting
heavy pressure on the in-progress computation tasks [6], [7].

Workload fluctuation. A long-running streaming applica-
tion in the cloud can experience periodic or abrupt workload
variations as well as unpredicted workload skews [11], which
may overburden multiple computing nodes in the data center,
causing severe straggler problems [1]. Resource planning and
task deployment prior to job execution cannot adequately
address such workload-related problems. Ideally, an efficient
DSPS should flexibly leverage provisioned resources and trans-

parently migrate workload hotspots at runtime in order to
achieve balanced parallel computation.

Multi-tenant resource sharing. The next-generation clus-
ter negotiators, such as Mesos [12] and Yarn [13], are taking
over from slot-based job managers by providing fine-grained
resource-sharing capability. In these resource-management
frameworks, the cluster negotiator may dynamically preempt
or grant resources, i.e., CPUs and RAMs, from or to systems
at runtime for minimizing operating costs and preserving
service-level objectives (SLOs). To support such multi-tenancy,
the system runtime is expected to support flexible horizontal
elasticity1 and vertical elasticity2 without degrading stream
computation performance or affecting collocated tenants [14].

The challenges listed above call for a DSPS that is capable
of supporting elastic stateful stream processing in a multi-
tenant environment. Intensive research efforts have focused
on elasticity for traditional database systems [15], [16], [17] as
well as for data analytics systems [18], [8], [19]. In dataflow
computation frameworks, elasticity is generally achieved by
live state migration and complex state maintenance in active
tasks. On facing workload spikes, the internal states of overly
burdened tasks are repartitioned and transfered to lightly
loaded computing nodes using live-migration techniques. Like-
wise, when resources are relinquished, the internal states of the
involved tasks should be relocated and carefully consolidated
without losing state consistency. This widely adopted strategy
may perform well if the internal state in the active tasks is
small. However, as the operator state expands to gigabytes or
larger, the overhead caused by network load due to migration
and state synchronization will increase, possibly violating the
cluster SLOs and severely dampening the system performance.
Our extensive experiments show convincingly that this classic
paradigm is inefficient.

In this paper, we introduce ChronoStream, a system
that supports transparent elasticity and high availability in
latency-sensitive stream computation. ChronoStream integrates
several key ideas that contribute to its effectiveness. First,
ChronoStream aggressively divides the application-level states
into a collection of computation slices, selectively distributes
and checkpoints them into specified nodes; second, when node
failure or workload redistribution occurs, ChronoStream trans-
parently reconstructs and reschedules slice computation, elimi-
nating any high and unpredictable overhead caused by network
I/O and state synchronization; third, ChronoStream carefully
balances the tradeoff between runtime performance and failure-

1add (remove) computing nodes in a system, aka scale out (in)
2add (remove) resources at a single node in a system, aka scale up (down)



recovery latency, minimizing potential system traps.

Our main contributions are as follows:

• We design ChronoStream, a distributed system that
supports big stream processing in a multi-tenant
environment. ChronoStream guarantees deterministic
stream computation using locality-affinity checkpoint-
ing and lineage-free progress tracking. We present
the system implementation and provide optimization
solutions.

• We propose a lightweight state-management abstrac-
tion for big stateful computation. We illustrate how
our system design detaches application-level computa-
tion parallelism from OS-level execution concurrency,
achieving low-latency stream processing and transpar-
ent workload reconfiguration in an integrated model.

• We evaluate the performance of ChronoStream
from several perspectives: scalability, elasticity, and
fault tolerance. By comparing ChronoStream with
several stream processing systems, we show that
ChronoStream can scale linearly to dozens of nodes
and achieve elasticity and high availability without
sacrificing cluster SLOs or system performance.

We organize the paper as follows: Section II introduces
the system model of ChronoStream. Section III presents the
state-management abstraction built inside ChronoStream. Im-
plementation highlights are given in Section IV. We report
results of an experimental study of ChronoStream in Section V.
Section VI reviews some recently proposed related work. We
conclude the paper in Section VII.

II. SYSTEM MODEL

In this section, we introduce the system model of
ChronoStream. We first present the high-level programming
model that supports the runtime logic of upper-layer streaming
applications, and then present the execution model that guides
the job deployment on the computing cluster.

A. Programming Model

At a high level, a ChronoStream application takes as
input a group of streams from various external event sys-
tems (e.g., sensor networks, logging systems) and generates
multiple output streams as results. In ChronoStream, data is
represented as event streams, each generated by an operator
and consisting of a potentially unbounded sequence of events.
An event contains two parts: a key field and a payload. The key
field is assigned by the user for stream-partitioning purposes.
Events in the same stream with different keys are considered
computationally independent. The payload has a well-defined
schema and bears the actual application data associated with
the event. The programmer is responsible for implementing
serialization functions for each user-defined event type. The
pseudocode of the event-tuple abstraction is shown as follows:

class Event{
virtual INT64 GetHashCode();
virtual void Serialize(STRING &string);
virtual void Deserialize(STRING &string);

};

A programmer composes a query DAG to deliver execution
logic to ChronoStream. A query DAG is a directed acyclic
graph consisting of a set of logical operators connected by
event streams. Each stream is given an ID declared by the
programmer. A logical operator is the basic programming unit
that encapsulates processing logic. An operator consumes and
produces a set of streams, and optionally maintains a com-
putation state. Input streams with different IDs are consumed
in a deterministic fashion in order to preserve computational
determinism. Each operator implements an input function:

void ConsumeEvent(ID &id, EVENT &event);

On receiving an event from an input stream, the function
ConsumeEvent is triggered, where id denotes the input
stream ID that generates event. A programmer may call a
system-provided function to emit output events to downstream
operators:

this->ProduceEvent(ID &id, EVENT &event);

where id denotes the output stream ID that receives event.

The invocation of ConsumeEvent may result in an up-
date to the user-defined computation state, which is maintained
in system-level in-memory storage, resembling a key-value
store. The computation state is allocated by calling a state
registration function, with a state pointer as return value:

STATE* this->RegisterState();

A computation state is updated through a set of APIs:

bool Set(KEY &key, EVENT &event);
bool Get(KEY &key, EVENT &event);
bool Delete(KEY &key);

A query DAG contains one or more special operators called
stream extractors that generate input streams for the DAG from
various kinds of sources (e.g., sensor data, transaction logs,
etc.) and one or more stream outputters to handle the output
results of the DAG.

B. Execution Model

ChronoStream compiles a query DAG into an execution
plan consisting of units of execution and dataflow relations
that can be physically deployed in computing clusters. Each
logical operator in the query DAG is transformed into an
operator stage, which maintains a stage-level internal state that
spans across multiple nodes as necessary. During the query
deployment phase, these operator stages are distributed to
the cluster successively. Each operator stage registers with its
targeted nodes by creating a dedicated resource container. The
resource container is stage-specific and each node may bear
multiple resource containers from different stages. Resource
containers for the same stage are mutually called peer con-
tainers, or peers for short.3 These containers collaboratively
hold the stage-level internal state, with each maintaining parts

3In an operator stage with n containers, each container has n−1 peers. A
container cannot be a peer of itself.



of the state and accepting the corresponding input streams from
upstream operator stages in a deterministic manner. The design
of stage-level state management will be further elaborated in
Section III. Figure 1 shows the operator-stage deployment
phase presented above.
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Fig. 1. Operator stage deployment.

Resource containers between neighboring stages are fully
connected with each other, forming a large shuffle phase. The
resource (i.e., CPUs and RAMs) granted to an operator stage
is shared and managed jointly by the corresponding stage-level
resource containers. A streaming execution runtime for a four-
stage application is depicted in Figure 2.
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Fig. 2. Execution runtime of a four-stage application.

Each resource container reports its current status such as
heartbeat and computation progress to a job master periodi-
cally. The master issues instructions to certain resource con-
tainers when dynamic scaling or failure recovery is required.

III. STATE MANAGEMENT

In this section, we present the state-management abstrac-
tion in ChronoStream. We first introduce the overall design
of the state-management abstraction that powers parallel state-
ful computation, and then elaborate fundamental mechanisms
for enforcing system determinism. We further demonstrate
how ChronoStream transparently leverages two-dimensional
dynamic scaling and parallel failure recovery by eliminating
network I/O and synchronization overhead. We close this
section with comprehensive system comparisons.

A. Design Overview

ChronoStream parallelizes and distributes stateful computa-
tion in large-scale computing clusters. In ChronoStream, each
logical operator in the query DAG is modeled as a state
machine that accepts a set of input streams, manipulates its
internal states, and generates a set of output streams. We
generally classify the internal states in each logical operator
into two forms: computation state and configuration state.

Computation state is defined as a collection of
application-level data structures that can be directly accessed
and manipulated according to user-defined execution logic.
Without losing generality, ChronoStream models each user-
defined data structure as a key-value store, and any mutation
is correspondingly represented as get, set, or delete
operations. During the deployment phase, ChronoStream ag-
gressively hash-partitions the computation state maintained in
an operator stage into an array of constant number of fine-
grained computation slices, and distributes them to multiple
resource containers in a balanced fashion. Each slice is a
computationally-independent unit associated with a subset of
input streams and generating corresponding output streams.
We say the slices are container-oblivious as they can be
transparently relocated to peer containers in the same operator
stage without affecting the consistency of its output streams.

Configuration state is the set of container-level states that
maintains the runtime-relevant parameters. The configuration
state is tied to each container and its contents may vary be-
tween different containers. The configuration state maintained
in each resource container includes three components: an input
routing table, which directs the input events into associated
slices; an output routing table, which routes output events from
an internal slice to the corresponding resource container in the
downstream operator stage; and a thread-control table, which
records how the OS-level threads are scheduled to support the
computation of upper-layer slices. In a nutshell, configuration
state actually plays the role of bridging from application-level
parallelism to local OS-level multithreads.

Applica�on-level compu�ng parallelism

OS-level execu�on concurrency

Computa�on slices

Configura�on state

…
Node

Container

Fig. 3. Design overview of the internal state management abstraction.

Figure 3 depicts the relation among internal states, resource
containers, and the underlying computing nodes in an operator
stage. ChronoStream enables horizontal and vertical elasticity
by logically scaling the computing nodes and manipulating



the corresponding configuration states instead of adjusting the
upper-level computation states. Each container periodically
checkpoints its active slices to remote peer containers. Any
update to the configuration state in any container is recorded
to the job manager persistently.

B. Fundamental Mechanisms

Streaming computation in ChronoStream is deterministic,
elastic, and highly available. This subsection describes several
advanced mechanisms that support these characteristics.

Chained Backup. ChronoStream periodically checkpoints
the active computation slices to remote nodes for supporting
elasticity and high availability. While it is always possible
to rely on an underlying replicated storage system such as
HDFS for durability, that approach is generally ineffective for
a latency-sensitive computation framework due to its poor data
locality and expensive replication overhead. ChronoStream
addresses this problem by backing up the active slices in
each resource container to its peer containers with a locality-
sensitive data placement scheme, described as follows:

In a given operator stage, with a backup factor
of L, for a resource container that bears M ac-
tive slices S1,S2,S3, ...,SM and has N corresponding
peer containers P1,P2,P3, ...,PN , the lth (1 ≤ l ≤ L)
backup for the mth slice Sm will be delivered to the
{(m+ l)%N}th peer container, or namely, P(m+l)%N .

We call this strategy chained backup, because the slice
backups are placed in a linked sequence, like a chain. The
chained-backup strategy evenly distributes the backups to the
peer containers at scale, greatly facilitates the elasticity and
failure recovery, which will be further elaborated in a later
subsection. Figure 4 exhibits how chained backup works in
an operator stage given that the backup factor is set to 1. To
guarantee high availability, the backup factor is usually set to 3.
A user can also change the backup factor in the configuration
file to explore a balance between runtime performance and
fault tolerance.
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Fig. 4. Chained backup in an operator stage.

ChronoStream also persists output events of each slice
periodically, for the purpose of stream replaying when node
failure or workload reconfiguration occurs.

Computation progress tracking. Computation slices in
ChronoStream need to be reconstructed once failure recovery
or dynamic scaling is triggered. Restarting stream processing
using dependency tracking preserves computation correctness
but suffers from the expensive overhead of cascaded recom-
putation when the dependent state in the lineage graph is
lost from memory [7], [6], [20]. This problem becomes even

worse if the missing state in the lineage graph is large or the
execution logic is complex. ChronoStream addresses this prob-
lem by tracking computation progress for each independent
slice. Given a computation slice σ that consumes a number
of input streams from the neighboring upstream operator
stage(s), we define its computation progress as a vector of
the number of consumed events from its input streams, de-
noted as prog(σ) = 〈i1, i2, i3, ...〉. To record such computation
progress, ChronoStream labels each event in a stream with
monotonically increasing sequence number in order to identify
them uniquely. At the time slice checkpointing is triggered,
the progress vector is recorded along with the slice snapshot.
Figure 5 illustrates how progress tracking works with two input
streams. The computation slice σ takes events from these two
streams X and Y in a deterministic manner and continuously
records the progress. When the first checkpoint point arrives,
the input events X1,Y1,X2,Y2 have been consumed, with the
slice σ updated to σ1. In this case, the snapshot of σ1 is
persisted, with progress vector prog(σ1) = 〈2,2〉 attached in
its header.

1st ckpt 2nd ckpt 3rd ckpt

Slice 

Input stream 

Input stream 

Fig. 5. Computation progress tracking with two input streams.

Progress information is transparent to users and essentially
provides data-dependency information to exploit deterministic
state reconstruction. This approach cuts off the dependency
lineage across multiple linked operator stages, completely
eliminating state rollback-and-recompute overhead.

Asynchronous delta checkpointing. Traditional streaming
platforms such as Storm and S4 expect system users to provide
state persistence semantics, generally requiring periodic syn-
chronous state checkpointing. This approach is unsuitable for
big streaming applications in a multi-tenant environment, for
two reasons. First, synchronous checkpointing requires expen-
sive locking of the internal state, possibly interrupting ongoing
stream processing for a long period. Second, checkpointing
the entire computation state leads to expensive network and
disk I/O, causing further interference to collocated systems.
ChronoStream tackles this problem using an asynchronous
delta checkpointing mechanism. In ChronoStream, the lifetime
of a computation state is divided into three phases: normal
phase, checkpointing phase, and merging phase. In the nor-
mal phase, every update to a computation state is directly
reflected at the corresponding key-value store and the updated
entry is marked with a dirty bit. On triggering the check-
pointing phase, ChronoStream scans all the maintained key-
value stores and persists the corresponding updated entries to
remote storage. The checkpointing phase is nonblocking, i.e.,
ongoing stream processing remains active and every incoming
update is buffered to a temporary data structure. Once the



checkpointing phase is completed, the merging phase starts
and all the buffered updates are further integrated into the
associated key-value store. Delta checkpointing comes with
the overhead of reconstructing the computation states from
scratch. ChronoStream periodically merges the deltas at the
backup side so as to reduce reconstruction overhead.

C. Horizontal Elasticity

In a multi-tenant computing cluster, a system runtime is ex-
pected to dynamically utilize resources and balance workloads
across provisioned nodes, without interrupting in-progress
computation or affecting collocated tenants. To enable such
flexible elasticity, transparent workload migration is a critical
capability. State migration techniques reported in the database
and virtual-machine literature [15], [16], [21] do not fit well
in the latency-sensitive stream-processing scenario, as these
approaches inevitably incur significant overhead from network
I/O and state synchronization [22]. ChronoStream addresses
this challenge using a lightweight transactional migration
protocol based on stage-level state reconstruction. Figure 6
illustrates the procedure for migrating a computation slice Smig
in the operator stage SGmig from the source computing node
Nsrc to the destination node Ndst .
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Source node Des"na"on node

Fig. 6. Transparent workload migration.

Phase 0 (Migration preparation): Workload migration is
initiated by spawning a dedicated resource container RCdst of
the stage SGmig in node Ndst , if the container of SGmig does
not exist in Ndst . In Figure 6, Slice 1 is to be migrated.

Phase 1 (State rebuilding): The job master sends a
request to RCdst to trigger slice reconstruction for Smig. On
receiving the instruction, RCdst rebuilds the slice by retrieving
the slice backup from the local persistent storage, or from
remote peer containers if the corresponding backup does not
exist locally. We say that the slice backup is upgraded to
an active slice, which is ready for stream processing. The
computation progress vector included in the slice backup
header is extracted, and sent back to the job master to indicate
the completion of slice reconstruction. The container RCsrc
continues powering Smig during the slice-rebuilding phase to

guarantee zero service interruption. In Figure 6, the backup of
Slice 1 at RCdst is upgraded to an active state.

Phase 2 (Dataflow rerouting): On receiving notification,
the master immediately sends dataflow rerouting requests to
the upstream operator(s) for input re-forwarding. Dependent
stream events are reloaded and resent to the destination re-
source container according to the computation progress vector.
Once dataflow is rerouted, the corresponding stream gets con-
sumed in RCdst , in which case slice Smig is actually processed
in both RCsrc and RCdst , forming a dual mode step. The
downstream operators filter out the duplicated tuples according
to the sequence number attached to each event.

Phase 3 (Resource releasing): After rerouting, the master
further request resource release from RCsrc, which keeps
processing Smig until no further output tuples can be generated.
The whole migration procedure completes once the resource
is confirmed as released from RCsrc. In Figure 6, Slice 1 at
RCsrc is downgraded and becomes inactive.

This transparent workload migration mechanism works best
when the slice backup can be directly reloaded from local
storage. In this case, the expensive overhead caused by network
I/O is fully eliminated, leading to zero computation inter-
ruption and negligible performance interference. To achieve
this ideal performance, ChronoStream tries with best effort to
migrate the computing workload to those nodes where cor-
responding slice backup resides. The migration protocol also
guarantees that the workload from a single resource container
can be migrated to multiple peer containers in parallel, if
necessary.

D. Vertical Elasticity

Modern cluster negotiators support fine-grained runtime
resource allocation. ChronoStream enables such resource man-
agement by providing vertical scaling in a straightforward
manner. For a resource container in ChronoStream, each as-
signed OS-level thread is one-to-many mapped to application-
level computation slices for stateful computation scheduling.
Such a thread-to-slice mapping is recorded in a thread-control
table inside the configuration state. On receiving vertical
scaling request, ChronoStream directly manipulates the thread-
control table in order to reschedule the computation. At any
time, the computation workload assigned to each thread can be
dynamically rearranged to achieve thread-level load balance.
Programmer may even encode a customized scheduling mech-
anism into the resource containers. Figure 7 illustrates how a
resource container scales up its core usage.

1 2 3 4 5 6 1 2 3 4 5 6
Scale up

2 cores 3 cores

Fig. 7. Dynamic vertical scaling in a resource container.

Dynamic updates to the thread-control table need to be
transactional. A traditional readers-writer lock enables such
atomic operation, but drastically limits effective concurrency.



ChronoStream minimizes such locking costs by implement-
ing a lightweight optimistic readers-writer latch. Instead of
acquiring and releasing a lock every time the thread-control
table is accessed, each reader thread will hold the latch until a
periodically installed synchronization barrier has arrived. This
approach minimizes the lock-checking frequency, while pre-
venting the writer-starvation problem. Our experiments further
confirm the efficiency of the chosen locking strategy.

E. Fault Tolerance

ChronoStream recovers lost slices in parallel if node failure
occurs. Similar to the workload-migration protocol that powers
the horizontal elasticity capability, ChronoStream masks node
failure through a stage-level state-reconstruction approach.
Figure 8 illustrates how failure recovery in ChronoStream
works in a single operator stage running on three nodes.
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Fig. 8. Parallel failure recovery.

As is depicted in the figure, the resource container running
on Node 2 periodically backs up its active slices, namely
S4,S5,S6,S7, to its peer containers in Node 1 and Node 3. Once
node failure is detected, the job master immediately sends
requests to Node 1 and Node 3 for slice reconstruction. As
the peer container in Node 1 holds the backup of S4 and S6,
these two slices will be retrieved and activated directly in Node
1. Similarly, S5 and S7 will be directly reconstructed in Node 3.
Computation determinism is guaranteed by the progress depen-
dency attached in the header of each slice backup. This parallel
failure-recovery protocol minimizes the computing downtime
when the active backups in a single resource container can
be spread over to as many peer containers as possible. The
chained-backup mechanism adopted in ChronoStream guaran-
tees this condition and ensures any computation interruption
caused by node failure can be restored within a short period.

F. Computation Slice Granularity

In ChronoStream, the computation slice granularity in
each operator stage is determined at compilation time and
is kept constant throughout the system runtime. Setting the
slice granularity statically in a reasonable manner is not
easy. ChronoStream configures the slice granularity with the
purpose of providing elasticity at best effort. Given a parameter
array < N1

i ,N
2
i ,N

3
i , ...,N

m
i > denoting the maximum number

of cores that can be utilized by the operator stage SGi in
each of the m provisonable nodes, SGi aggressively partitions
its computation states to Nmax

i slices, where Nmax
i is equal

to N1
i +N2

i +N3
i + ...+Nm

i . To achieve the highest elasticity
degree, the operator stage SGi should scale to m nodes and
utilize all the Nmax

i available cores, in which case each OS-level
thread is one-to-one mapped to the upper-level computation

slices, obtaining the best system performance. ChronoStream
also allows the system user to manually configure the slice
granularity according to specific application scenarios.

G. Comparison

ChronoStream differs from other stream-processing sys-
tems in supporting flexible elasticity and high availability
for big stateful applications, especially in multi-tenant clus-
ter environment. Table I compares several stream-processing
platforms with the focus on state management strategy, elas-
ticity, and fault tolerance. D-Stream manages its internal state
using an immutable abstraction called RDD. While D-Stream
also supports parallel recovery, its rollback-recompute-based
fault-tolerance strategy pays a high cost when an operator’s
execution logic is complex and its internal state is large. In
SEEP & SDG, state management is made explicit to the system
users, who must perform workload redistribution themselves.
In addition, state-repartition-based mechanisms for dynamic
scaling can incur significantly high overhead. TimeStream
enables elasticity by sub-DAG reconstruction, which can cause
long computation downtime. In comparison, ChronoStream
provides large-state management at the system level and sup-
ports fine-grained two-dimensional elasticity, without affecting
system performance or requiring user interaction.

IV. IMPLEMENTATION

We implemented ChronoStream from scratch using 20,000
lines of C++ code, excluding the test suites and third-
party libraries. This section describes the system runtime of
ChronoStream and presents some optimization techniques that
further improve system performance.

Distributed runtime. The ChronoStream runtime is built
with the principle of seamlessly integrating with a next-
generation cluster negotiator such as Mesos and Yarn. Figure 9
depicts the distributed runtime overview of ChronoStream. In
this system framework, a framework tracker is deployed in a
dedicated node to manage resources granted to each streaming
job. A node service is running on each computing node in the
cluster. On receiving a job submission, the framework tracker
communicates with the cluster negotiator to apply for com-
puting resources. Once resources are granted, the framework
tracker distributes the user-submitted job to each provisioned
node and starts monitoring the resource allocation status. A
job master is generated to spawn resource containers, track
computing progress, and periodically send garbage-collection
instructions for each container. The master also helps in
balancing resource allocation at runtime.

Extended state library. ChronoStream utilizes a key-value
store for computation-slice maintenance. The performance of
this generalized model may be limited when supporting certain
specialized structures such as sliding windows. To improve
performance, we also implemented an internal state library
on top of the key-value store to support a broader range of
structures, including queues, array lists, and sliding windows.

Asynchronous output persistence. ChronoStream persists
output events to replicated storage. Synchronously persisting
tuples brings high disk-access cost. ChronoStream supports
output buffering to “cache” recently generated tuples and
periodically dumps them into persistent storage in batches.



System State management State update Horizontal elasticity Vertical elasticity Fault tolerance
Storm & S4 Not applicable Not applicable Stateless reconstruct Stateless reconstruct Recompute

Samza External databases Fine-grained Not supported Not supported Sync. checkpoint
D-Stream RDD Immutable Not supported Thread rescheduling Recompute

SEEP & SDG User-aware Fine-grained State repartition&migration State repartition Async. checkpoint
TimeStream User-transparent Fine-grained Sub-DAG reconstruct Sub-DAG reconstruct Dependent recompute

ChronoStream User-transparent Fine-grained Fine-grained reconstruct Thread rescheduling Async. delta checkpoint

TABLE I. A COMPARISON AMONGST SEVERAL DISTRIBUTED STREAM PROCESSING SYSTEMS.
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Fig. 9. Distributed runtime overview of ChronoStream.

Replication buffering. ChronoStream also supports repli-
cation buffering. On receiving slice replica from remote peer
containers, a resource container delays the replication persist-
ing procedure and temporarily stores the replica in memory.
Once dynamic scaling or failure recovery occurs, the replica
can be directly utilized without incurring disk I/O.

V. EXPERIMENTS

We designed and conducted a series of experiments to
evaluate the performance of ChronoStream. We pay special
attention to scalability, elasticity, checkpointing, and failure
recovery. We further report the possible overhead introduced
by computation slice scheduling. We compared our system
with two open-source stream-processing systems: Storm [4]
and Spark Stream [6]. Our experiments were performed on a
20 node in-house cluster running CentOS 5.5. Each node is
configured with 16 cores and 24 GB of memory.

A. Applications

For the experimental study, we ported two online event-
analytics applications to our systems.

Top-K frequent words. This application monitors a text
stream and reports the top-K most frequently used words over
a sliding stream window. We feed the query with Wikipedia
article abstract streams containing millions of entries from
100 categories, where the average length of each entry is 474
bytes. The query DAG comprises three components: a source
operator, a set of processing operators, and a sink operator.
The source operator divides the input stream into multiple
substreams according to the categories and delivers them to
the processing operators. Each processing operator filters out
the stop words in the texts and performs a word count over a

sliding window. The results are further ranked by the frequency
and the top-K events are sent to the final sink operator.

Tweet-similarity search. This application explores the
most similar tweet pairs based on posting location over a
sliding window. Like the previous application, three elements
comprise the query DAG. A source operator partitions the in-
coming tweet stream by user location and feeds the substreams
to a set of processing operators. For each input event, each
processing operator scans the contents of a sliding window of
recent tweets and searches for the most similar tweet according
to the number of shared words. The most similar paired tweets
are sent to a sink operator periodically.

In both applications, a dedicated Kafka server is spawned to
continuously load the input datasets from local disk and feed an
input stream to the stream-processing system. Each incoming
tuple is attached with a sequence-id field to indicate the stream
progress. In all these experiments, we implement counting-
based sliding window to precisely control the computation-
state size.

B. Scalability

We implemented the two streaming applications in
ChronoStream, Storm, and Spark Stream, and compared their
performance on scalability. For fairness, we turned off check-
pointing in this set of experiments, since Storm does not
intrinsically support checkpoint-based recovery.

The first experiment evaluates the execution time for con-
suming every 100,000 tuples in the top-K frequent words
application. We fix the computation-state volume at 12 GB,
and scale the runtime system to 20 nodes, each utilizing
one core. For ChronoStream, we place only one computation
slice in each resource container to avoid potential overhead
caused by slice scheduling. As shown in Figure 10, the
execution time of the three systems drops near-linearly as
the number of computing nodes increases. When scaling to
20 nodes, ChronoStream reaches a peak processing rate of
193K events per second. Storm performs two times slower
than ChronoStream, since JVM-based systems usually suffer
from overhead caused by string manipulation and garbage
collection. Spark Stream, to our surprise, does not perform
well in this experiment. By consulting the Spark mailing list,
we found that the problem is due to disk access during data
shuffling phase4. The performance can therefore be improved
by utilizing a fast storage medium such as SSD or an in-
memory filesystem. ChronoStream and Storm, on the other
hand, do not require such hardware-related optimization, as
all the computations are in memory.

4https://www.mail-archive.com/user@spark.apache.org/msg05433.html
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Fig. 10. Execution time for consuming 100,000 continuous events.

The second experiment measures system throughput by
bounding end-to-end latency below one second. Figure 11
captures the maximum throughput each system can sustain
on the top-K frequent words application with 12 GB of
computation state. Similar to what we have observed in the
previous experiment, ChronoStream scales out linearly in the
cluster, reaching the maximum throughput of over 80 MB per
second. In comparison, Storm and Spark Stream also expand
to 20 nodes, but achieve comparatively lower throughput, due
to the same reasons as above.
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Fig. 11. Throughput under sub-second latency bound.

The following two experiments examine how state volume
influences the performance of ChronoStream.

Figure 12 illustrates the execution time of ChronoStream
for processing 100,000 continuous events in the top-K frequent
words application with varied computation-state volumes. The
application is deployed on 4 computing nodes, with the work-
load distributed in a balanced manner. As is shown in the
figure, the execution time grows smoothly as the computation
state enlarges from 5 GB to 40 GB. The increase is primar-
ily caused by cache misses and memory paging. This type
of application is essentially scale independent [23], because
theoretically the computation complexity remains stable with
the increase in state volume, and the RAM capacity in the
computing nodes tends to become the system bottleneck.

The execution time for processing 50,000 events in the
tweet-similarity search application is shown in Figure 13.
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Fig. 12. Processing 100,000 events in top-K frequent words application.
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Fig. 13. Processing 50,000 events in tweet-similarity search application.

We deployed the ChronoStream runtime on 20 computing
nodes. With the computation state growing from 2 GB to 16
GB, the corresponding execution time rises correspondingly
from around 15 seconds to more than 120 seconds. In this
type of applications, the computation complexity increases
linearly as the program scales. Such applications are known
as scale dependent, and CPU throughput usually becomes the
bottleneck that hampers the execution performance.

C. Horizontal Elasticity

We investigate the efficiency of workload migration mech-
anism in ChronoStream to validate whether the system can
transparently support horizontal elasticity. We compare the
slice-reconstruction approach proposed in ChronoStream with
state-migration approach, which is widely adopted in many
elastic systems [15], [16], [21], [8]. For fairness, the state-
migration approach is also implemented in ChronoStream.

To examine the effect of horizontal scaling to in-progress
stream computation, we migrate the streaming workload be-
tween two computing nodes and measure the resulting ex-
ecution delay, defined as the time duration from the point
when the migration instruction is issued to the point when
the next output tuple is generated. As shown in Figure 14, the
state-migration mechanism leads to increasingly high latency
as the migrated workload grows from 1 GB to 8 GB. Such
delay is mainly caused by network I/O and state consistency
cost, which is directly related to the migrated state capacity.



In contrast, by eliminating all synchronization and I/O-related
overhead, the lightweight slice-reconstruction mechanism en-
ables ChronoStream to generate outputs continuously, with
tolerable service delay.
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Fig. 14. Execution delay caused by horizontal scaling.

Next we validate how different horizontal scaling mecha-
nisms affect the collocated tenants. We deploy ChronoStream
and a main-memory database, namely H-Store [24], on the
same 2 computing nodes, and monitor the database throughput
variation caused by ChronoStream’s workload migration. The
H-Store instance continuously processes the TPC-C bench-
mark with 10 single-threaded partitions5, each loading 1 GB of
warehouse data. We spawn 20 client host threads for issuing
query requests from external nodes. For ChronoStream, we
migrate 5 GB of data between 2 nodes using the slice-
reconstruction approach and state-migration approach. Fig-
ure 15 shows the result. Under the interference of the state-
migration mechanism, the database throughput drops down to
1,638 transactions per second on average during the workload-
transfer stage. In comparison, slice-reconstruction approach re-
locates its workload smoothly, without causing any remarkable
effect on the collocated database service.
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Fig. 15. Horizontal scaling affect on a collocated database system.

D. Vertical Elasticity

In this subsection, we study the effectiveness of verti-
cal elasticity in ChronoStream. We measure the benefit of

5https://github.com/apavlo/h-store/issues/159.

our thread-rescheduling mechanism in comparison with the
state-repartition approach, which synchronously reallocates the
workload to each thread. The state-repartition approach is also
implemented in ChronoStream. We installed our system in two
nodes, then increased the number of cores utilized in each
node from 2 to 3, to see how dynamic vertical scaling affects
the ongoing stream-processing task. For thread-rescheduling
mechanism, we set the number of slices maintained in each
resource container to 6. Figure 16 captures the execution delay
introduced by vertical scaling. As the state capacity expands
from 1 GB to 8 GB, the state-repartition approach incurs longer
execution delays, up to 54 seconds, while thread-rescheduling
maintains latency below 5 seconds. The difference in execution
delay arises in part because the state-repartition approach
synchronously performs state transformation operations, tem-
porarily blocking all the processing tasks.
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Fig. 16. Execution delay caused by vertical scaling.

We further investigate the possible performance effect on
collocated tenants caused by vertical scaling. We deployed the
target streaming system and H-Store on 2 computing nodes,
and monitored the database performance variation caused by
dynamic vertical scaling of the streaming system. For H-Store,
we used the same configuration and spawned 20 client host
threads as in the previous experiments. For ChronoStream,
the CPU allocation in each node is dynamically increased
from 2 to 3 cores. From Figure 17, we observe that the
thread-rescheduling approach enables vertical elasticity with
negligible affect on the collocated systems. In contrast, state
repartition can cause significant performance interference.

E. Checkpointing

The following set of experiments investigates how different
checkpointing strategies influence the system performance and
cluster network bandwidth. We compared the asynchronous
delta checkpointing mechanism with synchronous checkpoint-
ing approach, which is widely adopted in the traditional stream
processing systems [9], [8].

We illustrate the impact of checkpointing strategy on the
computation performance in a single node. The system runtime
checkpoints the computation states every 60 seconds. We
measured the average and maximum execution time for pro-
cessing 100,000 tuples in the top-K frequent words application.
Figure 18 captures the results with the state capacity growing
from 128 MB to 4 GB. For synchronous checkpointing, the
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Fig. 17. Vertical scaling affect on a collocated database system.

ongoing stream computation is significantly affected during
the checkpointing phase: the maximum execution time rises to
23,512 and 48,902 milliseconds for checkpointing 2 GB and 4
GB internal states respectively. In contrast, asynchronous delta
checkpointing has little effect, only incurring around 4-seconds
extra delay when the state capacity expands to 4 GB.
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Fig. 18. Average and maximum execution time under the affect of
computation-state checkpointing on a single node.

State checkpointing also affects network bandwidth in the
cluster, and consequently affects the whole cluster ecosystem.
Table II shows the network bandwidth variation caused by
checkpointing. With the checkpoint interval set to 30 seconds,
we monitor network statistics using the ifstat tool, which
reports network bandwidth numbers at 1-second granularity.
To checkpoint 2 GB of internal state, the input and output
bandwidths respectively rise to 110,710 KB and 78,346 KB
for 8 seconds. In contrast, asynchronous delta checkpointing
only causes less-than-4-second bandwidth spike.

F. Failure Recovery

We further evaluate the effectiveness of the parallel failure-
recovery strategy adopted by ChronoStream. We carefully
analyze the three major factors that may influence parallel
failure-recovery performance: failed-computation-state capac-
ity, degree of parallelism, and checkpoint interval.

Figure 19 reports how failed-state capacity and degree
of parallelism affect workload-recovery latency. We change
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Fig. 19. Recovery latency with different failed state capacity.

the lost computation-state volume from 1 GB to 8 GB and
measure the average recovery latency using different numbers
of recovery nodes. The checkpoint interval is set to 30 seconds.
As Figure 19 shows, doubling the recovery nodes reduces the
recovery time by half. When the lost state capacity grows to
8 GB, single node recovery leads to over 100 seconds service
downtime, far beyond acceptable range in latency-sensitive ap-
plications. Comparatively, parallelized failure recovery with 10
nodes reduces such latency to 27 seconds, which is moderately
sustainable in the stateful-computation scenario.
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Fig. 20. Recovery latency with different checkpoint interval.

Figure 20 shows the effect of changing the checkpoint
frequency and degree of parallelism. The black vertical lines
represent the minimum recovery latency that can be achieved.
We maintain the failed state capacity at 4 GB. As shown in the
results, the average recovery latency increases roughly linearly
with checkpoint interval, while the minimum recovery latency
remains stable. This pattern is not a coincidence: if the node
failure occurs right after the state checkpointing completes,
the failure recovery time can be significantly reduced as the
recomputation cost is minimized.

G. Slice Scheduling Overhead

The elastic stateful computation model in ChronoStream
does not come for free: it may incur slice-scheduling overhead.
ChronoStream minimizes such overhead by implementing op-
timistic readers-writer latch, as is described in Section III-D.



Input network statistics Output network statistics
Normal Checkpoint Normal Checkpoint

Bandwidth Duration Bandwidth Duration Bandwidth Duration Bandwidth Duration
Sync. checkpoint 60,251 KB/s 22 s 110,710 KB/s 8 s 249 KB/s 22 s 78,346 KB/s 8 s

Async. delta checkpoint 60,229 KB/s 28 s 115,313 KB/s 2 s 249 KB/s 26 s 42,251 KB/s 4 s

TABLE II. NETWORK BANDWIDTH CHANGE CAUSED BY CHECKPOINTING. THE CHECKPOINT INTERVAL IS SET TO 30 SECONDS.

To understand the overall impact, we deploy ChronoStream
with Top-K frequent words application in a single-core node,
increase the number of computation slices from 1 to 10 and
measure whether certain performance degradation occurs. As
is shown in Figure 21, the slice scheduling is lightweight and
no significant deterioration in performance is observed. Even
in the worst case, our model only causes 4.69% extra overhead.
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Fig. 21. The overhead of computation slice scheduling.

To conclude, all the experiments above demonstrated the
effectiveness of ChronoStream from multiple aspects, includ-
ing scalability, elasticity, and fault tolerance.

VI. RELATED WORK

ChronoStream exploits the strengths from several different
research fields, spanning across system models, elastic com-
putation, in-memory state checkpointing, and failure recovery.
We discuss the related works in each of these areas.

Stream-processing systems. Several recent papers have
proposed possible system models for large-scale stream com-
putation. Comet [2] and CBP [3] adopt a bulk-incremental
processing model, which decomposes continuous streaming
computation into a series of batch incremental computation
tasks that are further processed on the classic MapReduce
platform. While these systems take advantage of the scalability
and elasticity in MapReduce frameworks, they inevitably result
in high latency, of up to several minutes. Storm [4] and
S4 [5] are popular open-source stream-processing systems built
to provide high-performance message-passing functionalities.
While achieving good stream-processing performance, they
generally have limited failure-recovery guarantees and do not
provide state management from system level. Samza [9] is
another open-source streaming system designed with a focus
on fault-tolerant state maintenance. However, it requires an
external replicated database for state persistence, leading to
unpredicted overhead. D-Stream [6] partitions data stream into
a sequence of mini-batches that are processed as stateless tasks

in parallel. While this discretized stream model unifies batch
processing with stream processing, they suffer from expensive
cost of batch scheduling and state manipulation, possibly de-
grading system performance. Photon [10] and MillWheel [25]
are two large-scale stream-processing systems built by Google.
Although powering different applications, both systems rely
on global distributed storage such as BigTable [26] and Span-
ner [27] to achieve fault tolerance, which may incur high cost
of network and disk I/O. TimeStream [7] intrinsically support
deterministic stateful computation. We extend its system model
and further support transparent elasticity and high availability
using an integrated state-management abstraction.

Elasticity. There has been a large body of research on
introducing elasticity to distributed systems. Curino et al. [17]
explored elastic transactional workloads in a multi-tenant en-
vironment. Albatross [16] and Zephyr [15] address the live-
migration problem in a shared-storage and a shared-nothing
database, respectively. Rajagopalan et al. [28] introduced elas-
ticity to virtual middleboxes using a split/merge approach.
EventWave [29] employs an elastic programming model and
system runtime for cloud computation.

In the big-data analytics field, Ananthanarayanan et al. [18]
proposed a system called Amoeba to support lightweight elas-
ticity in the traditional MapReduce platform. However, their
methods cannot be generalized to stream-processing scenarios,
since Amoeba takes advantage of the disk-based shuffling
phase, which is exclusive to the MapReduce model. SEEP [8],
[19], to the best of our knowledge, is the most recently
proposed DSPS that supports task reconfiguration at runtime.
However, its state-repartition-based strategy inevitably leads to
a heavy cost in state migration and maintenance, further de-
grading ongoing-computation performance and affecting collo-
cated tenants. Meanwhile, explicitly exposing internal states to
the programmers makes the system vulnerable to inexperienced
state rewriting.

Fault tolerance. Several authors have discussed possible
fault-tolerance strategies for DSPS. As a pioneering team in
exploring the stream database field, Hwang et al. [30], [31]
proposed upstream backup and an active-passitive replication
approach to maintain high system availability. These two fun-
damental approaches balance the tradeoff between resource uti-
lization rate and recovery latency, while ignoring the internal-
state maintenance issue. Kown et al. [32] optimized the
scheduling mechanism of an underlying distributed file system
to better facilitate fault tolerance in stream-processing systems.
Meteor Shower [20] fully investigated the cascading failure
problem in stream processing, and adopted upstream backup
as the fault-tolerance strategy. In D-Stream, a parallel failure-
recovery approach is employed that benefits from the lineage
tracking of RDDs [33]. Fault tolerance in stateful stream-
processing systems is also closely related to that in main-
memory database systems. RAMCloud [34] utilizes a high-



speed network to perform fast parallel recovery. H-store [24],
[35] adopts logical logging and a copy-on-write approach to
database availability. Hyper [36] is a centralized main-memory
database that adopts a hardware-assisted approach to achieve
fast state checkpointing. ChronoStream differs from these
works by carefully modeling application-level internal states
and introducing an integrated state-management abstraction for
both availability and elasticity.

VII. CONCLUSION

We have proposed ChronoStream, a distributed system
specifically designed for big stream computation in the multi-
tenant cloud. ChronoStream treats large internal state as a
first-class citizen and provides transparent elasticity support
in both vertical and horizontal dimensions. By dividing com-
putation states into a collection of fine-grained slice units,
ChronoStream effectively distributes computation states into
multiple nodes, and clearly detaches the application-level
computation parallelism from OS-level execution concurrency.
Our extensive experiments confirmed that ChronoStream can
achieve transparent elasticity and high availability without
sacrificing system performance or affecting collocated tenants.
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