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ABSTRACT

Database administrators construct secondary indexes on data
tables to accelerate query processing in relational database
management systems (RDBMSs). These indexes are built
on top of the most frequently queried columns according
to the data statistics. Unfortunately, maintaining multiple
secondary indexes in the same database can be extremely
space consuming, causing significant performance degrada-
tion due to the potential exhaustion of memory space. In this
paper, we demonstrate that there exist many opportunities
to exploit column correlations for accelerating data access.
We propose Hermit, a succinct secondary indexing mecha-
nism for modern RDBMSs. Hermit judiciously leverages the
rich soft functional dependencies hidden among columns
to prune out redundant structures for indexed key access.
Instead of building a complete index that stores every single
entry in the key columns, Hermit navigates any incoming
key access queries to an existing index built on the corre-
lated columns. This is achieved through the Tiered Regres-
sion Search Tree (TRS-Tree), a succinct, ML-enhanced data
structure that performs fast curve fitting to adaptively and
dynamically capture both column correlations and outliers.
Our extensive experimental study in two different RDBMSs
have confirmed that Hermit can significantly reduce space
consumption with limited performance overhead, especially
when supporting complex range queries.
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1 INTRODUCTION

Modern relational database management systems (RDBMSs)
support fast secondary indexes that help accelerate query
processing in both transactional and analytical workloads.
These indexes, created either by database administrators or
automatically by query optimizers, are built on top of the
most frequently queried columns, hence providing an effi-
cient way to retrieve data tuples via these columns. However,
managing multiple secondary indexes in the database can
consume large amounts of storage space, potentially causing
severe performance degradation due to the exhaustion of
memory space. This problem is not uncommon especially
in the context of modern main-memory RDBMSs, where
memory space is a scarce resource.

Confronting this problem, researchers in the database com-
munity have proposed various practical solutions to limit the
space usage for index maintenance. From the database tun-
ing perspective, some of the research works have introduced
smart performance tuning advisors that can automatically
select the most beneficial secondary indexes given a fixed
space budget [4, 9, 35].While satisfying the space constraints,
these techniques essentially limit the number of secondary
indexes built on the tables, consequently causing poor perfor-
mance for queries that lookup the unindexed columns. From
the structure design perspective, a group of researchers has
developed space-efficient index structures that consume less
storage space compared to conventional indexes [13]. These
works either store only a subset of the column entries [34]
or use compression techniques to reduce space consump-
tion [39]. However, such solutions save limited amount of
space and can cause high overhead for lookup operations.
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We attempt to address this problem in a third way. The
main observation that sparks our idea is that many columns
in the data tables exhibit correlation relations, or soft func-
tional dependencies, where the values of a column can be
estimated by that of another column with approximation. Ex-
ploiting such a relation can greatly reduce the memory con-
sumption caused by secondary index maintenance. Specif-
ically, if we want to create an index on a column M that is
highly correlated with another columnN where an index has
been built, we can simply construct a succinct, ML-enhanced
data structure, called Tiered Regression Search Tree, or TRS-
Tree, to capture the correlation betweenM andN . TRS-Tree
exploits multiple simple statistical regression processes to fit
the curve of the hidden correlation function. Different from
existing machine learning-based indexing solutions, TRS-
Tree efficiently handles inserts, deletes, and updates, and
supports on-demand structure reorganization to re-optimize
the index efficiency at system runtime. To perform a lookup
query onM , the RDBMS retrieves a lookup range on N from
the newly constructed TRS-Tree and fetches the targeted
tuples using N ’s index. We call this mechanism Hermit.

Hermit achieves competitive performance when support-
ing range queries, which are prevalent for secondary key
column accesses. It also presents a tradeoff between com-
putation and space consumption. While avoiding building a
complete index structure remarkably reduces space consump-
tion, Hermit requires any incoming query to go through an
additional hop before retrieving the targeted tuples. How-
ever, as our experiments will show, this overhead does not
substantially affect performance in practice, and it also brings
in huge benefits when storage space is valuable and scarce,
such as in main-memory RDBMSs.

This paper is organized as follows. Section 2 provides tech-
nical background. Section 3 gives an overview of Hermit.
Section 4 presents Hermit’s TRS-Tree structure, and Sec-
tion 5 shows how Hermit leverages TRS-Tree to perform
tuple retrieval. Section 6 discusses several issues. We report
experiment results in Section 7. Section 8 reviews related
works and Section 9 concludes.

2 BACKGROUND

In this section, we provide some background about index
structures and column correlations in the context of RDBMSs.

Index Structures.Modern RDBMSs use secondary index
structures to improve the speed of data retrieval at the cost of
additional writes and space consumption. A secondary index
is created either by a database administrator or automatically
by a query optimizer, and is built on top of one or more fre-
quently accessed columns. An index can be considered as a
copy of the corresponding key columns organized in a format
that provides fast mapping to the tuple identifiers, in terms

of either tuple locations or primary keys [37]. Maintaining
multiple secondary indexes can be expensive, especially in
the context of main-memory RDBMSs. This is confirmed by
a recent study [39] which showed that index maintenance
can consume around 55% of the total memory space. Con-
fronting this problem, researchers have proposed various
space-efficient index structures to reduce space consump-
tion. In general, these works share two basic ideas: (1) using
classic compression techniques such as Huffman encoding
or dictionary encoding to reduce the index node size [13];
(2) storing only a subset of entries from the indexed columns
to reduce the number of leaf nodes [34]. Despite the limited
reduction in memory consumption, these techniques can
incur high overhead when processing lookup operations.

Column Correlations. A conventional RDBMS allows
database administrators to set integrity constraints using
SQL statements to express the functional dependencies among
data columns. These explicitly declared functional depen-
dencies can be leveraged by query optimizers to provide a
more accurate cost estimation during the query rewriting
phase. In addition to these “hard” functional dependencies,
modern query optimizers also attempt to explore “soft” func-
tional dependencies to generate better query plans using the
column correlation relations. Column correlations capture
approximate dependencies, meaning that the value of a col-
umn can determine that of another approximately. Following
the definition in existing works, we define a column correla-
tion relation as a triple (M,N , Fn), whereM and N are data
columns in the table exhibiting correlations, and Fn is a cor-
relation function specifying how N ’s values can be estimated
from M . Besides simple algebraic computation [7] (e.g., +,
−, ×, /) and linear functions [11, 15] (e.g., N = βM + α ± ϵ),
a correlation function N = Fn(M ) can be of any possible
form. This will allow us to capture the correlations in many
modern database applications, such as environment monitor-
ing (oxygen v.s. carbon dioxide), stock market (Dow-Jones
v.s. S&P 500), and healthcare (glucagon v.s. insulin). Existing
RDBMSs have already exploited this kind of data character-
istics to address system efficiency problems, including data
compression, query rewriting, and database tuning [19–21].
In the following sections, we will show how we can leverage
correlations to accelerate data access.

3 OVERVIEW

The correlation hidden among different columns in an RDBMS
indicates a high similarity of their corresponding index struc-
tures. Observing that, we developed a succinct, yet fast sec-
ondary indexingmechanism, namelyHermit, which exploits
the column correlations to answer queries.

To index a specified columnM , Hermit requires two com-
ponents: a succinct data structure called Tiered Regression



Search Tree (abbr., TRS-Tree) on the target columnM , and
a pre-existing complete index called host index on the host
column N . TRS-Tree models the correlation betweenM and
N : it leverages a tiered regression method to perform hierar-
chical curve fitting over the correlation function Fn fromM
to N , and uses a tree structure to index a set of regression
functions each of which represents an approximate linear
mapping from a value range ofM to that of N .

To process a query, Hermit runs a three-phase searching
algorithm: (1) TRS-Tree search; (2) host index search; and
(3) base table validation. Specifically, Hermit uses the query
predicate to search the TRS-Tree in order to retrieve the
range mapping fromM to N . It then leverages the host index
to find a set of candidate tuple identifiers. We note that this
candidate set is approximate, and it contains false positives
that fail to satisfy the original predicates. Hermit removes
those false positives by directly validating the corresponding
values on the base table.

Hermit also works for multi-column secondary indexes.
Suppose that two columns A and M on a table are queried
together frequently, so an index on (A,M ) is desirable. Her-
mit can utilize a host index on (A,N ) and the correlation
betweenM and N , to answer queries on A andM .

In the case where multi-column correlation exists (e.g., (W,
X)->(Y,Z), although rarely detected by RDBMSs), Hermit
can concatenate multiple keys and build TRS-Tree on them.

We now use a running example to demonstrate how Her-
mitworks. Let us consider a data table STOCK_HISTORY record-
ing U.S. stock market trading histories with four different
columns: TIME (i.e., trading date), DJ (i.e., Dow Jones), SP (i.e.,
S&P 500), and VOL (i.e., total trading volume). The database
administrator has already created an index on (TIME, DJ).
Now she decides to create another index on (TIME, SP) due
to the frequent occurrence of the queries like:

SELECT * FROM STOCK_HISTORY
WHERE (TIME BETWEEN ? AND ?) AND (SP BETWEEN ? AND ?)

On receiving the index creation statement, the RDBMS
adopting Hermit first checks whether any column correla-
tion involving TIME or SP has been detected via any correla-
tion discovery algorithms. If observing that the values in SP
are highly correlated with those in DJ and that there is an
existing index on (TIME, DJ), the RDBMS then constructs a
TRS-Tree to model the correlation mapping from SP to DJ.
Given the query ranges (Tmin ,Tmax ) on column TIME and
(Smin , Smax ) on column SP, Hermit first inputs the SP range
(Smin , Smax ) to the constructed TRS-Tree to fetch the cor-
responding range (Dmin ,Dmax ) on DJ. Then it searches the
host index on (TIME, DJ), with TIME range (Tmin ,Tmax ) and
DJ range (Dmin ,Dmax ), to find all the satisfying tuples. To
filter out false positives, the RDBMS reads the SP values from
the base table and validates the correctness of the result.

TIME DJ SP VOL

INDEX TABLE

(a) Conventional index

TIME DJ SP VOL

INDEX TABLE

(b) Hermit

Figure 1: A comparison between data retrieval via conven-

tional secondary indexes and Hermit. (double triangles de-

notes conventional secondary index; small single triangle

denotes the proposed TRS-Tree structure)

Figure 1 shows howHermit is different from conventional
secondary indexing mechanisms when retrieving tuples in
the running example. Unlike existing indexing techniques
that provide direct accesses to the tuple identifiers, Hermit
requires two-hop accesses. While potentially causing higher
access overhead for point queries, Hermit can achieve very
competitive performance for range queries that are highly
common for secondary indexes (as we will demonstrate in
the experiments). And, of course, Hermit can significantly
reduce the space consumption for index maintenance.

Hermit can support insert, delete, and update operations
with correctness guarantees. Due to its approximate char-
acteristics, Hermit works best for range queries, which are
quite common for secondary key columns, especially in data
analytics. Furthermore, Hermit is extremely beneficial for
main-memory RDBMSs, where memory space is scarce.

4 TRS-TREE

TRS-Tree is a succinct tree structure that models data cor-
relation between a target column M and a host column N
within the same data table of a database. It leverages a tiered
regression method to adaptively and dynamically perform
the curve fitting over the correlation functionN = Fn(M ). To
be precise, TRS-Tree decomposes the complex curve-fitting
problem into multiple simpler sub-problems and uses linear
regression method to accurately address these sub-problems.
TRS-Tree is adaptive, in the sense that it constructs its inter-
nal structures based on the correlation complexity; it is also
dynamic, meaning that it reorganizes its internals at runtime
to ensure the best efficiency.

In the following section, we first discuss TRS-Tree’s inter-
nal structure, and then demonstrate its construction, lookup,
maintenance, parameter setting, and optimization.

4.1 Internal Structure

TRS-Tree is a k-ary tree structure that maps the values in
the target column M to that in the host column N . Its con-
struction algorithm recursively divides M ’s value range into
k uniform sub-ranges until every entry pair (m,n) fromM
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and N covered by the corresponding sub-range can be well
estimated by a simple linear regression-based data mapping.
As a tree-based data structure, TRS-Tree uses leaf nodes to
maintain the detailed data mappings, with its internal nodes
providing fast navigation to these leaf nodes. Figure 2 shows
a TRS-Tree structure constructed on a target column whose
value range is from 0 to 1024.

Leaf node. A leaf node in TRS-Tree is associated with a
sub-range r of the target columnM . We define that a range
r has two elements: a lower bound lb and an upper bound
ub. Given a set of column entries Mr from M covered by
r (i.e., ∀m ∈ Mr , r .lb ≤ m ≤ r .ub), the leaf node attempts
to provide an approximate linear mapping from Mr to its
corresponding set of column entries N r in the host column
N . Such a mapping is represented using a linear function
n = βm + α ± ϵ , where m and n represent column values
fromMr and N r , β and α respectively denote the function’s
slope and intercept, and ϵ denotes the confidence interval.
TRS-Tree computes β and α using the standard linear

regression formula [3] listed below:

α = N r − βMr β =
cov (Mr , N r )

var (Mr )

where N r and Mr respectively denote the average values
of elements in N r and Mr , var (Mr ) is the variance of ele-
ments inMr , and cov (Mr ,N r ) presents the covariance of the
corresponding elements inMr and N r . Based on the above
equations, both α and β can be computed with one scan of
the data inMr and N r .

Different from the slope and intercept, the confidence in-
terval ϵ can be computed based on a user-defined parameter,
called error_bound , as will be elaborated in Section 4.5.

The functionn = βm+α±ϵ captures an approximate linear
correlation between columnsM and N under the sub-range
r inM . Given anm inMr , it bounds the corresponding n to

Algorithm 1: Index construction in TRS-Tree
Data: base table T , target column ID cidM , host column ID

cidN , value range R
Result: TRS-Tree’s root node root

1 Node root(R);
2 TmpTable fullTmpTable = ProjectTable (T , cidM , cidN );
3 FIFOQueue queue;
4 queue.Push (Pair(root, fullTmpTable));
5 while queue.IsNotEmpty () do
6 Pair pair = queue.Pop ();
7 Node node = pair.GetKey ();
8 TmpTable tmpTable = pair.GetValue ();
9 Compute (tmpTable, node);

10 if !Validate (tmpTable, node) then
11 Node[] subNodes = SplitNode (node, node_fanout);
12 TmpTable[] subTables = SplitTable (tmpTable,

subNodes);
13 foreach i in (0 to node_fanout − 1) do
14 queue.Push (Pair(subNodes[i], subTables[i]));
15 DeleteTmpTable (tmpTable);
16 return root;
17 Function Validate(tmpTable, node)
18 foreach entry in tmpTable do
19 if entry.host < node.GetHostRange (entry.target)

then

20 node.outliers.Add (entry.target, entry.tid);
21 if node.outliers.Size () >

outlier_ratio*tmpTable.Size () then
22 return false;
23 return true;

be in the range (βm+α −ϵ, βm+α +ϵ ). However, not all the
entry pairs (m,n) fromMr and N r are necessarily covered
by the computed linear function. We call these entry pairs
as outliers. The leaf node maintains all these outliers in an
outlier buffer, which is implemented as a hash table mapping
fromm to the corresponding tuple’s identifier, which can be
either a primary key or a tuple location, as we will elaborate
in Section 5.

Internal node. An internal node in TRS-Tree functions
as a navigator that routes the queries to their targeted leaf
nodes. Similar to the leaf nodes, each internal node is asso-
ciated to a range in the target columnM . However, instead
of maintaining any mapping to the host column, an internal
node only maintains a fixed number of pointers pointing to
its child nodes, each of which can be either a leaf node or
another internal node. To perform a lookup, an internal node
can easily navigate the query to the corresponding child
node whose range covers the input value.



4.2 Construction

An RDBMS can efficiently construct a TRS-Tree upon the
user’s request. Algorithm 1 details the construction steps.
The construction algorithm takes as input the base table T ,
the target column ID cidM , the host column ID cidN , and
the target column’s full range R. The range R contains the
minimum and maximum values in the target column and
can be easily obtained from the RDBMS’s optimizer statistics.
The algorithm also requires a set of TRS-Tree’s pre-defined
parameters for computation.
This construction algorithm utilizes a FIFO (first-in-first-

out) queue to build the TRS-Tree in a top-down fashion.
Each element in the FIFO queue is a pair that contains a TRS-
Tree node and the node’s corresponding temporary table.
The temporary table for a TRS-Tree node is a sub-table ofT ,
which selects rows with target column in the node’s range,
and projects only the target and host columns along with
each tuple’s identifier.
TRS-Tree’s construction starts by creating a root node

with its range set to the whole range R, and pushing the
root node along with its projected temporary table into the
FIFO queue. It then does the following steps iteratively until
the FIFO queue is empty: (1) retrieve the (tmpTable , node)
pair from the FIFO queue; (2) compute node’s β , α , and ϵ and
determine whether the generated linear mapping can well
cover its corresponding entry pairs; (3) if (2) returns false,
then split node and tmpTable respectively into multiple child
nodes and sub-tables, then push the corresponding pairs of
child node and sub-table back to the FIFO queue.
The Compute function scans a node’s temporary table to

compute the parameters for the linear function. The Validate
function scans the temporary table again, and validateswhether
each pair of target and host column values can be covered by
the linear function. Any unqualified entry is inserted to the
node’s outlier buffer. A node’s linear function is determined
to be not good enough if the outlier buffer exceeds a pre-
defined outlier_ratio, which is a ratio of the outlier buffer
size to the total number of tuples covered by the node. In
this case, step (3) is triggered, which drops all the generated
content in node and splits it into a fixed number (equals to
the pre-defined node_fanout parameter) of equal-range child
nodes. The users can limit the maximum depth of the tree
structure by setting the parametermax_heiдht .
The user-defined parameters for TRS-Tree can directly

control the confidence interval of the linear functions as well
as the outlier buffer size, consequently affecting the perfor-
mance. We discuss the parameters in Section 4.5. We further
elaborate several optimization strategies in Appendix D.
We now perform a complexity analysis for Algorithm 1.

TRS-Tree uses Compute function to scan the tuples covered
by every tree node to derive a linear regression model. If

Algorithm 2: Index lookup in TRS-Tree
Data: root node root , predicate P
Result: range set RS , tuple identity set IS

1 Set<Range> RS;
2 Set<TupleID> IS;
3 FIFOQueue queue;
4 queue.Push (root);
5 while queue.IsNotEmpty () do
6 node = queue.Pop ();
7 if node.IsLeaf () then
8 Range r = Intersect (node.range, P );
9 RS.Add (node.GetHostRange (r));

10 IS.Add (node.outliers.Lookup (r));
11 else

12 foreach child in node.children do

13 if child.IsOverlapping (P ) then
14 queue.Push (child);
15 RS = Union (RS);
16 return RS and IS ;

the generated TRS-Tree is always a balanced full tree, then
running linear regressions for all the tree nodes at the same
height takes a full scan of all tuples. A TRS-Treewith height
equal tohwill performh full scans in total. Ash is bounded by
the parametermax_heiдht , we can conclude that the average
and worst case complexities are O (N ).

4.3 Lookup

TRS-Tree allows users to perform both point and range
lookups on the target column M to get the corresponding
results on the host column N . Instead of returning results
that exactly match the query predicates, TRS-Tree’ lookup
algorithm returns approximate results. Hermit will perform
additional lookups on the host indexes and further validate
the results and generate exact matchings.
Algorithm 2 lists the details of TRS-Tree’s lookup algo-

rithm. The algorithm takes as input TRS-Tree’s root node
root and a query predicate P on the target columnM . It gen-
erates as output a set of value ranges RS on the host column
N as well as a set of tuple identifiers IS . Without losing gen-
erality, we consider P to be a value range on M with two
elements: lower bound lb and upper boundub. A point query
predicate has its lower bound equals to its higher bound. The
lookup starts from root and runs a breadth-first search using
a FIFO queue. The TRS-Tree iterates every single node in the
queue and performs a lookup if the node is a leaf node. On
confronting an internal node, TRS-Tree retrieves its child
nodes and checks whether each child’s range overlaps with
P . Any overlapping child node will be pushed to the FIFO
queue. The lookup algorithm continues iterating until the
queue is empty.



Algorithm 3: Index insertion and deletion in TRS-Tree
Data: root node root , target column valuem, host column

value n, tuple ID tid
1 Function Insert(root ,m, n, tid)
2 Node node = Traverse (root );
3 if n < node.GetHostRange (m) then
4 node.outliers.Add (m, tid);
5 Function Delete(root ,m, n, tid)
6 Node node = Traverse (root );
7 node.outliers.Remove (m, tid);
8 Function Traverse(node,m)
9 if node.IsLeaf () then

10 return node;
11 else

12 foreach child in node.children do

13 if m ∈ child.range then
14 return Traverse(child);

TRS-Tree performs a lookup on a leaf node by taking the
following steps. First, it computes an intersection between
the query predicate P and the node’s value range. The inter-
section result is a value range r . Using this range, the node
can then use its linear function to compute the estimated
range on N that covers the exact matching. The estimated
range will be either (β × r .lb + α − ϵ, β × r .ub + α + ϵ ) or
(β × r .ub + α − ϵ, β × r .lb + α + ϵ ), depending on the sign
(positive or negative) of the slope β . Not all the matchings
are covered by the linear function. Hence, the leaf node
further retrieves a set of tuple identifiers from its outlier
buffer. These identifiers can be used to directly fetch the cor-
responding tuples from the RDBMS without looking up the
host index. Before terminating the algorithm, TRS-Tree com-
putes a union among all the elements in RS . This is because
the returned ranges generated by different leaf nodes can
overlap. Computing the union can help reduce the number
of elements in RS .

4.4 Maintenance

At system runtime, TRS-Tree can dynamically support all
of the commonly used database operations, including inser-
tions, deletions, and updates. This makes TRS-Tree a drastic
departure from existing machine learning-based solutions,
which rely on a long-running training phase to reconstruct
the index structures from scratch. TRS-Tree also reorganizes
the TRS-Tree structure at runtime to ensure the best query
performance. Algorithm 3 demonstrates how TRS-Tree pro-
cesses insertions and deletions.

Insertion. Tuple insertions in TRS-Tree are performed
swiftly with little runtime change to its internal structures.
Given the to-be-inserted tuple’s target column valuem, host
column value n, and tuple identifier tid , TRS-Tree starts

the insertion by locating the leaf node containing the range
coveringm. After that, TRS-Tree checks whether the node’s
corresponding range of the host column can cover n (using
the leaf node’s linear function). If not, then TRS-Tree inserts
this tuple’sm and tid into the outlier buffer. Otherwise, the
insertion algorithm directly terminates. The outlier buffer
size of certain leaf nodes may grow to be too large, conse-
quently degrading TRS-Tree’s lookup performance. In this
case, TRS-Tree invokes structure reorganization to further
split these nodes, as we shall discuss shortly.

Deletion.The tuple deletion algorithm inTRS-Tree shares
a similar routine as the insertion. However, TRS-Tree does
not perform any computation after locating the leaf node.
Instead, it directly checks the outlier buffer and removes the
corresponding entry if exists. Frequent tuple deletion from
the index can cause suboptimal space utilization problem,
meaning that TRS-Tree can potentially use less number of
leaf nodes to accurately capture the column correlations.
TRS-Tree also relies on the structure reorganization to han-
dle this issue.

Reorganization.Aswe havementioned above,TRS-Tree
reorganizes its internal structure on demand to optimize the
index efficiency in terms of both lookup performance and
space utilization. TRS-Tree detects reorganization opportu-
nities based on two criteria. First, the outlier buffer size of a
certain leaf node reaches a threshold ratio compared to the
total number of tuples covered in the corresponding range;
second, the number of deleted tuples covered by the leaf
node’s corresponding range reaches a threshold compared
to the total number of tuples. For the first case, TRS-Tree
directly splits the leaf node into multiple equal-range child
nodes, as described in Algorithm 1. For the second case, TRS-
Tree checks the node’s neighbors to determine whether
merging is beneficial.

TRS-Tree uses a dedicated background thread to execute
the reorganization procedure, but it offloads the detection of
candidate nodes to each insert/delete operation. Specifically,
TRS-Tree maintains a FIFO queue to record nodes where
merge or split can be made. Once an insert operation finishes
its procedure and detects that the outlier buffer size of its
visited leaf node has reached the threshold, it then adds
the pointer to the leaf node into the FIFO queue. Delete
operations proceed in a similar manner, but they add into
the FIFO queue the pointer to the parent of the visited leaf
node. Every entry in the queue is attached with a flag to
identify whether this node is a candidate for split or merge.

To perform structure reorganization, the background thread
scans the target column to obtain all the tuples that fall into
the affected value range. It then computes the linear func-
tions and populates the outlier buffers before installing the
new node(s) into the tree structure. To reduce the latency



of the reorganization procedure, TRS-Tree periodically per-
forms batch structure reorganization, meaning that the back-
ground thread can reorganize several candidate nodes in one
scan. On confronting drastic workload change, TRS-Tree
can reorganize entire subtree at once (as we shall see in
Section 7.7). TRS-Tree also supports online structure reor-
ganization, which enables concurrent lookup/insert/delete
operations with little interference. TRS-Tree ensures the
structure consistency by leveraging a very simple yet effi-
cient synchronization protocol. Due to the space limit, we
provide more details in Appendix B.

4.5 Parameters

TRS-Tree requires the users to pre-define some parame-
ters before the index construction, including node_fanout,
max_heiдht , and outlier_ratio. There is another important
parameter, called error_bound , which is used to determine
the confidence interval ϵ of each leaf node.

The error_bound parameter represents the expected num-
ber of host column N values covered by the range returned
from searching a TRS-Tree node for a point query on the
target column M . So, by setting this parameter, TRS-Tree
roughly measures the number of false positives for a point
query. For a given leaf node with range r on columnM , its
linear function returns an estimated range (β × r .lb + α −
ϵ, β × r .ub + α + ϵ ) on column N (We assume slope β to
be positive. Our discussion be easily generalized to cases
with negative slopes.). For any pointm ∈ r on column M ,
the linear function returns a range (β ×m + α − ϵ, β ×m +
α + ϵ ) on column N . Let n be the number tuples covered
by the leaf node. Assuming that values on column N are
uniformly distributed, then the expected number of values
of N for a point query (i.e. error_bound) can be estimated
as error_bound = 2ϵ

β (r .ub−r .lb )+2ϵ × n ≈
2ϵ

β (r .ub−r .lb ) × n. So,
now given a desired error_bound parameter value, we can
derive ϵ ≈ β (r .ub−r .lb )×error_bound

2n .
In theory, error_bound should be set carefully, since larger

error_bound generates larger ϵ , which subsequently results
in larger returned ranges for the upcoming host index lookup.
Too small error_bound can also cause performance degrada-
tion, since more tuples covered by the corresponding range
may be identified as outliers, consequently causing node
splitting, yielding much deeper tree structure. Fortunately,
in practice, the configuration of error_bound does not impact
the performance toomuch. This is because database users are
more likely to issue range queries on secondary key columns,
in which case the amount of false positives brought by large
ϵ is negligible compared to the amount of the tuples covered
by the range query predicate. Hence, Hermit adopting TRS-
Tree can enjoy a very competitive end-to-end performance

compared to conventional complete-tree indexes, even with
larger error_bound .

5 HERMIT

TRS-Tree lookup returns only approximate results. To obtain
the real matching for the input queries,Hermit further needs
to remove all the false positive results. In this section, we
first discuss tuple identifier schemes in existing RDBMSs, and
show how Hermit can work with these different schemes
and generate accurate query results.

5.1 Tuple Identifiers

A secondary index built on a certain (set of) column(s) pro-
vides a mapping from the columns’ key values to the corre-
sponding tuples’ identifiers. Tuple identifiers can be imple-
mented in two different ways depending on the RDBMS’s
performance requirement [14, 37]. Hermit’s indexing mech-
anism is general enough to work with both schemes.
An RDBMS adopting logical pointers stores the primary

key of the corresponding tuple in each secondary index’s
leaf nodes. The rationale behind logical pointers is that any
update to tuple locations will not influence the secondary
indexes. However, the drawback of this mechanism is that the
RDBMS has to perform an additional lookup on the primary
index every time a secondary index lookup happens. Popular
RDBMSs like MySQL adopt this mechanism.

AnRDBMS adopting the other identifiermechanism, called
physical pointers, directly stores tuple locations (in the for-
mat of "blockID+offset") in each secondary index’s leaf nodes.
While avoiding traversing the primary index during a sec-
ondary index lookup, an RDBMS using physical pointers has
to update each index’s corresponding leaf node once any tu-
ple location is changed. Several DBMSs such as PostgreSQL
employ this scheme.

5.2 Lookup in Hermit

Hermit can generate accurate lookup results for both tuple
identifier schemes. Figure 3 shows the entire workflow of
Hermit’s lookupmechanism.We list the key steps as follows:

Step 1. TRS-Tree lookup – This step performs a lookup on
TRS-Tree as described in Section 4.3. The results are a set of
ranges on the host column and a set of tuple identifiers.

Step 2. Host index lookup – This step performs lookups
on the host index with the returned host column ranges as
inputs. The result is a set of tuple identifiers, which is further
unioned with the set of identifiers returned from Step 1.

Step 3. Primary index lookup (optional) – This step occurs
only if the RDBMS adopts logical pointers as tuple identifiers.
It looks up the primary index with the returned set of tuple
identifiers as inputs. The result is a set of tuple locations.
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Figure 3: The workflow of Hermit’s lookup mechanism.

Step 4. Base table validation – This step fetches the actual
tuples using tuple locations and validates whether each tu-
ple satisfies the input predicates. This step returns all the
qualified results to the input query.

Please note that a primary index can also serve as the host
index, in which case the lookup procedure shall be the same.

Compared to conventional secondary index methods,Her-
mit can bring in additional overhead due to the extra host
index lookup phase as well as the base table validation phase.
The overhead is exacerbated when using logical pointers
as the tuple identifier scheme, as it involves unnecessary
primary index lookups for unqualified matchings. However,
we argue that such overhead is insignificant when perform-
ing range queries, which are prevalent for secondary in-
dexes. This is because the number of false positives for range
queries is quite small when compared to that of the qualified
tuples. Moreover, as a TRS-Tree greatly reduces the space
consumption, it brings huge benefit tomodernmain-memory
RDBMSs, where memory space is precious.

6 DISCUSSION

Tradeoff between space and computation.Compared to
conventional indexingmechanisms,TRS-Tree achieves great
space saving by sacrificing access performance. While the
actual space used by TRS-Tree is dependent on the cor-
relation quality (i.e., how correlate the two columns are),
we can indeed strike a balance by tuning the error_bound
parameter. Let us consider a scenario withmax_heiдht set
to 1, where TRS-Tree becomes a single-node, single-layer
structure. Now we tune the error_bound parameter and an-
alyze how TRS-Tree behaves. In an extreme case where
error_bound is set to 0, Hermit shall identify every single
data that cannot be perfectly covered by the generated lin-
ear function as outlier. In this case, Hermit can consume
more memory but achieves optimal lookup performance.
The increase of error_bound can effectively drop the mem-
ory consumption in the expense of reducing lookup per-
formance. This is because TRS-Tree enlarges the returned
bound for the lookups, and consequently introducing more
false positives. However, as we shall see in our experiments,
TRS-Tree’s performance is actually not quite sensitive to
the value of error_bound parameter, as long as it is set to

small enough. The key reason is that TRS-Tree navigates
lookups based on simple linear function computation, which
is much cheaper than chasing pointers and retrieving every
single elements from the standard index structure.
Due to the space limit, please refer to Appendix D for

detailed discussion on correlation recovery, optimization,
complex machine learning models, and several other issues.

7 EVALUATION

7.1 Experiment Setups

We implementedHermit in two different RDBMSs:DBMS-X,
a main-memory RDBMS prototype built internally in IBM
– Almaden, and PostgreSQL [2], a disk-based RDBMS that
is widely used in backing modern database applications. We
performed all the experiments on a commodity machine
running Ubuntu 16.04 with one 6-core Intel i7-8700 processor
clocked at 3.20 GHz. The machine has a 16 GB DRAM and
one PCIe attached 1 TB NVMe SSD.
We use three different applications to evaluate Hermit:

Synthetic, Stock, and Sensor. We provide the detailed
descriptions of these applications in Appendix A.

Throughout this section, we compare two mechanisms:
⋄Hermit: the correlation-based secondary indexingmech-

anism proposed in this paper.
⋄ Baseline: the standard B+-tree-based secondary index-

ing mechanism used in conventional RDBMSs.
The B+-tree in DBMS-X is fully maintained in memory. It

is highly optimized for modern CPUs with many advanced
techniques such as cache-conscious layout and SIMD instruc-
tions (for numerical keys) applied. The node size is set to 256
bytes. PostgreSQL instead implements a page-based B+-tree
backed by buffer pool. In our experiments, we have reconfig-
ured the buffer pool size to ensure that the B+-tree is fully
cached in memory.
Without any explicit declaration, we set TRS-Tree’s pa-

rameters, including node_fanout,max_heiдht , outlier_ratio,
and error_bound , to 8, 10, 0.1, and 2, respectively. TRS-Tree
achieves a good space-computation tradeoff with this con-
figuration, as we shall see later.

7.2 Real-World Applications

In this subsection, we evaluate Hermit’s performance using
real-world applications in DBMS-X.
The first experiment uses the Stock application to eval-

uate Hermit’s range query performance. It is simple for
Hermit’s TRS-Tree to model the correlations between a
stock’s daily highest and lowest prices, as they form a near-
linear correlation. One thing worth noticing is that there
does not exist any strict bound between the two prices, and
stock price can increase/drop by over 50% in a single day
(see PG&E stock (NYSE: PCG)). Hermit shall identify and
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Figure 4: Range lookup throughput with different selectivi-

ties (Stock).
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Figure 5: Memory consumption with different numbers of

indexes (Stock).

maintain these readings as outliers. Figure 4 shows the range
lookup throughput with different selectivities. As we can
see, Hermit yields a very competitive performance to the
baseline solution, which requires building a complete sec-
ondary index on every single column. While Hermit suffers
slightly from the overhead caused by false positive removal,
its influence to the overall throughput is reduced with the
increase of the selectivity.

We thenmeasureHermit’s memory consumption by chang-
ing the number of stocks stored in the table. Figure 5a shows
the result.When setting the number of indexes to 25, it means
we store 25 stocks in the table, as we build one index for each
stock’s lowest price column. The result indicates that Her-
mit’s TRS-Tree takes little memory space, and the RDBMS
adopting Hermit consumes only half of the memory com-
pared to adopting the baseline solution, which creates one
index for each column. In fact, Hermit in this case spends a
great fraction of memory for storing outliers, and this guaran-
tees a small false positive ratio, as we shall see later. Figure 5b
provides a space breakdown to confirm this finding.
Next, we test Hermit’s performance using the Sensor

application. Supporting fast data retrieval in this applica-
tion is challenging, as each sensor reading column has a
non-linear correlation with the average reading columns.
Figure 6 shows the throughput with different range lookup
selectivities. When setting the selectivity to 1.0%, Hermit
yields a throughput that is around 22% lower than the base-
line solution. However, the performance gap diminishes with
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Figure 6: Range lookup throughput with different selectivi-

ties (Sensor).
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Figure 7: Memory consumption with different numbers of

tuples (Sensor).

the growth of the selectivity. This is because Hermit gener-
ates approximate results, and the time ratio of filtering out
false positives decreases with the increase of the result size.
We then use the same application to measure Hermit’s

memory consumption. As Figure 7a shows, the space con-
sumed by the baseline solution grows much faster than that
consumed by Hermit. According to the analytics in Fig-
ure 7b, the baseline solution spends most of the memory
maintaining newly created secondary indexes. In contrast,
Hermit’s TRS-Tree takes much less space, and most of the
space is used for storing outliers.

7.3 Lookup

In this subsection, we evaluate Hermit’s range and point
lookup performance using the Synthetic application, with
both Linear and Sigmoid correlation functions. We perform
all the experiments in DBMS-X.
We use both Hermit and the baseline method to index

column colC . Modeling Linear correlation function is triv-
ial using Hermit’ TRS-Tree structure. However, it can be
challenging to model Sigmoid correlation function, which is
polynomial.

Figure 8 depicts the performance of Hermit and the base-
line mechanism with Linear correlation function. We set the
number of tuples to 20 million and measure the throughput
changes of the range lookup queries with different query se-
lectivities. We also adopt different tuple identifier methods to
show their impacts on the performance. The result indicates
that Hermit’s performance is very close to that achieved by
the baseline. Using logical pointers, Hermit and the baseline
respectively proceed 1.19 and 1.27 K operations per second
(K ops) with selectivity set to 0.01%. This gap is reduced with
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Figure 8: Range lookup throughput with different selectivi-

ties (Synthetic – Linear).
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Figure 9: Range lookup throughput with different selectivi-

ties (Synthetic – Sigmoid).
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Figure 10: Hermit’s range lookup performance breakdown

with different selectivities (Synthetic – Sigmoid).
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Figure 11: Baseline’s range lookup performance breakdown

with different selectivities (Synthetic – Sigmoid).

the increase of selectivity. The experiments with physical
pointers also demonstrate the same results. One of the rea-
sons is that Hermit’s TRS-Tree only needs to use a single
leaf node to model the correlation function, yielding optimal
performance. We then use Sigmoid function to test whether
TRS-Tree can efficiently model complex correlations. The
results in Figure 9 show that the performance gap is little
changed. Observing this, we decide to perform a detailed
analysis to understand where the time goes.

Figure 10 and Figure 11 respectively show the performance
breakdown of Hermit and the baseline method. The time
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Figure 12: Point lookup throughput with different numbers

of tuples (Synthetic – Linear).
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Figure 13: Point lookup throughput with different numbers

of tuples (Synthetic – Sigmoid).

includes both CPU and memory IO. Recall that Hermit per-
forms lookups through the following steps:TRS-Tree lookup,
host index lookup, primary index lookup (optional), and base
table validation. In contrast, the baseline method only needs
to perform secondary index lookup, primary index lookup
(optional), and base table access. With logical pointers as
tuple identifiers, both methods spend over 90% of their time
on the primary index lookup. This is inevitable because an
RDBMS using logical pointers does not directly expose the
tuple location to any index other than the primary one.When
identifying tuples using physical pointers, the major bottle-
neck of both methods shifted to the base table access. While
one-time tuple retrieval from the base table using its tuple
location seems to be trivial, the total number of the fetches
is actually equivalent to the total number of returned tuples,
which can be expensive in range queries.

Despite the high efficiency for range queries, Hermit suf-
fers from some performance degradation on point lookups,
due to its introduction of false positives.We nowmeasure the
point lookup throughput by increasing the number of tuples
in the database. Figure 12 shows the result with Linear cor-
relation function. Using logical pointers for tuple identifiers,
Hermit’s throughput is 35% lower than that achieved by the
baseline method, when the number of tuples is set to 20 mil-
lions. This is because Hermit’s TRS-Tree lookup results in
not only multiple unnecessary lookups on host and primary
indexes, but also additional validation phase on the base ta-
ble. We also observe that such a performance gap is reduced
to 15% when switching the identifier method to physical
pointers. The key reason is that the absence of expensive
primary index lookups helped reduceHermit’s performance
overhead. Figure 13 shows the point lookup performance
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Figure 14: Hermit’s point lookup performance breakdown

with different tuple counts (Synthetic – Sigmoid).
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Figure 15: Baseline’s point lookup performance breakdown

with different tuple counts (Synthetic – Sigmoid).

when using Sigmoid correlation function. Hermit’s perfor-
mance degrades with more tuples. The key reason is that
the increasing tuple count makes correlation function more
difficult to model, hence Hermit’s TRS-Tree can generate
more false positives for its subsequent processes, eventually
degrading the performance.
We further perform a performance breakdown to better

understand the point queries. Figure 14 and Figure 15 show
the results. There are two points worth noticing. First, using
logical pointers, Hermit spends an increasing amount of
time on primary index lookupwhen the tuple count increases.
As explained above, this is because the larger tuple count
indicates more complex correlation relations, and Hermit
has to waste more time on retrieving unqualified tuples from
the primary index. Second, compared to the baseline method,
Hermit spends a larger portion of time on the base table.
This is because Hermit has to validate every single tuple
fetched from the base table to filter out false positives.

Hermit’s performance can be affected by the correlation
quality as well as the user-defined parameters. Now we
control the percentages of the injected noise as well as the
value of error_bound to see how Hermit behaves. Figure 16
shows the range lookup (selectivity set to 0.01%) throughput
with different percentages of injected noise and different
error_bound values. We use logical pointers in the experi-
ment. We observe that Hermit’s performance drops drasti-
cally with the increase of error_bound . This is because larger
error_bound indicates more false positives, and Hermit has
to perform redundant secondary index lookups and rely on
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Figure 16: Range lookup throughput with different percent-

ages of injected noises and error_bound values (Synthetic).
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Figure 17: Range lookup false positive ratio with differ-

ent percentages of injected noises and error_bound values

(Synthetic).
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Figure 18: Memory consumption with different percentages

of injected noises and error_bound values (Synthetic).

the validation phase to remove unqualified tuples. This is
confirmed by Figure 17, which shows that the false positive
rate reaches up to 80% when error_bound is set to 10,000. An
interesting finding is that Hermit’s performance remains
stable with the increase of noise percentage. The key reason
is that Hermit is capable to capture any outlier that fall be-
yond its generated linear function, and it can effectively find
these outliers from the corresponding outlier buffers.

Figure 18 further shows how noisy data and error_bound
values affect Hermit’s memory consumption. Our first find-
ing is that the memory consumption grows linearly with
the increase of noise percentage. This is because Hermit
stores noisy data in outlier buffers, as explained above. Our
second finding is that the memory consumption declines
by increasing the error_bound values. This is because larger
error_bound coversmore data, and henceHermit’sTRS-Tree
can construct less nodes to capture the correlations. One
thing worth mentioning is the memory spent for capturing
the Linear and Sigmoid correlations tend to be the same
(close to 120 MB) when error_bound is set to 10,000. This
matches our expectation, as Hermit’s TRS-Tree spent most
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Figure 19: Index memory consumption with different num-

bers of tuples (Synthetic).
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Figure 20: Total memory consumption with different num-

bers of tuples (Synthetic – linear).

of the space for storing outliers, and only little space is used
for model correlations.
We observe that memory usage for capturing Sigmoid

drops a lot when changing error_bound from 1 to 10, but we
do not really see a noticeable decline in throughput. This
is because TRS-Tree can identify too many data as outliers
with error_bound set to 1. With the increase of error_bound ,
it efficiently captures correlations using linear regression
models. It also navigates lookups using computation rather
than chasing pointers, hence achieving good performance.

7.4 Space Consumption

Hermit trades performance for space efficiency. Its goal is
to greatly reduce the storage space while achieving “good
enough” tuple retrieval speed. In the last subsection, we
showed that Hermit yields competitive performance to the
conventional secondary index mechanisms when support-
ing database operations, especially range queries. Now we
measure Hermit’s space efficiency using the Synthetic
application. We still run all the experiments in DBMS-X.
The first experiment measures the amount of memory

used respectively by TRS-Tree and conventional secondary
index on colC . Figure 19 shows that, compared to the baseline
solution, Hermit takes little space to index the column. An
extreme case is to use Hermit’s TRS-Tree for capturing
Linear correlation function. In this case, TRS-Tree only
needs to use a constant amount of memory (a few bytes)
to record the linear function’s parameters. When modeling
Sigmoid function, TRS-Tree consumes more memory (less
than 10 MB) as the number of tuples increases, because TRS-
Tree needs to construct more leaf nodes to better fit the
correlation curve. However, Hermit’s memory consumption
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Figure 21: Index construction time with different numbers

of threads (Synthetic).
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Figure 22: Index insertion throughput with different num-

bers of indexes (Synthetic – Linear).

is still negligible compared to the baseline solution, which
takes close to 400 MB.

Next, wemeasure the overall memory consumption caused
by Hermit. Other than the existing indexes on colA and colB ,
we add some additional columns and build one index on
each of them. All these newly added columns are correlated
to colB . Figure 20a shows that, when adopting the baseline
solution, the amount of memory consumption grows near
linearly with the increasing number of newly added indexes.
Specifically, the database used up to 8.5 GB memory when
supporting 10 secondary indexes. In contrast, when adopting
Hermit, the database only consumes 2.4 GB memory, which
is a significant gain in memory utilization compared to the
baseline solution. Figure 20b further depicts the memory
usage breakdown when the number of indexes is set to 10.
The space consumed by Hermit’s TRS-Tree is negligible
compared to that used by the base table and the primary
index. However, when adopting the baseline solution, the
database application has to use over 70% of the memory to
maintain the secondary indexes. This result further confirms
Hermit’s space efficiency.

7.5 Construction

The construction of Hermit’s TRS-Tree is different from
that of the conventional B+-tree-like index structures. In this
experiment, we measure the time for constructing TRS-Tree
in DBMS-X with different numbers of threads. We compare
the results with that obtained by constructing the B+-tree
index. The B+-tree is built using single-thread bulk loading,
as it currently does not support multithreading mode. We
leave the comparison with concurrent B+-tree construction
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Figure 23: Index reorg. performance (Synthetic-Sigmoid).

as a future work. The results in Figure 21 contain two inter-
esting findings. First, TRS-Tree needs more time to finish
the index construction when confronting complex correla-
tion functions, such as Sigmoid. This is because TRS-Tree
needs to perform multiple rounds of computations to cal-
culate the leaf nodes’ linear functions. Second, TRS-Tree’s
construction time drops near linearly with the increase of
threads. This is because TRS-Tree constructs its internal
structures using a top-down mechanism, hence it can be
easily parallelized.

7.6 Insertion

Different from existing machine learning based index struc-
tures that require expensive retraining in face of data changes,
Hermit can dynamically support operations like insertion,
deletion, and updates at runtime. In this experiment, we use
DBMS-X to compare Hermit’s insertion performance with
conventional secondary indexes. Figure 22a depicts the over-
all insertion throughputs with different numbers of indexes.
Please note that we take into account the time for updating
the primary index and the base table. These results are ob-
tained with Linear correlation function and logical pointers,
and we observed the same trend with other configuration
combinations. As the result shows, when setting the num-
ber of indexes to 10, Hermit can process 1.7 million insert
operations per second, which is 2.6 times higher than that
achieved by the conventional secondary index scheme. The
major reason is that Hermit’s TRS-Tree only needs to up-
date the leaf nodes’ outlier buffers when necessary, which
is pretty lightweight. Figure 22b further explains the result.
Using the baseline mechanism, the database application has
to spend over 80% of the time for inserting tuples into the
secondary indexes. This demonstrates the inefficiency of the
conventional indexing mechanism for supporting inserts.

7.7 Maintenance

Hermit’s TRS-Tree can support online structure reorgani-
zation to re-optimize its efficiency. In this experiment, we
show how Hermit’s range lookup throughput and memory
consumption changes during the process of index reorgani-
zation. We first create TRS-Tree on a table with 10 K tuples,
and then insert another 19,990 K tuples to the table, yielding
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Figure 24: Range lookup performance in PostgreSQL.

20 million tuples in total. After that, we trigger structure reor-
ganization every 5 seconds, each time reorganizing 1/4 of the
structure (given our default node_fanout = 8, the reorganiza-
tion procedure reorganizes 2 first-level subtrees each time).
Note that this is an artificial scenario for testing purpose only.
In real life scenarios, TRS-Tree can adjust its reorganization
frequency based on the update rates, and the reorganization
process would happen in parallel with updates. During the
test, each partial reorganization takes around 2 seconds to
finish. Figure 23 shows a 30-second trace of range lookup
throughput (selectivity = 0.01%) and memory consumption.
As we can see, the range lookup throughput remains stable
during the reorganization. In general, reorganization reduces
the sizes of outlier buffers, resulting in less number of direct
pointer chasing during query processing. At the same time,
it also produces more tree nodes, hence contributing to more
precise characterization of the correlation. These two factors
balance out during the process. The memory consumption
drops significantly thanks to the structure reorganization.
However, we also observed instant spike during the start of
each reorganization. This is because the background thread
needs to perform table scan and materialize corresponding
data in order to compute linear function.

7.8 Disk-Based RDBMSs

Nowwe integrateHermit into a popular disk-based RDBMS,
namely PostgreSQL. We use the Sensor application to com-
pareHermit’s lookup performancewith that of PostgreSQL’s
secondary indexingmechanism (which is denoted as the base-
line solution). Please note that PostgreSQL adopts physical
pointers for tuple identifiers. We implemented a PostgreSQL
client using libpqxx [1] to issue queries. We still keep Her-
mit’s TRS-Tree in memory.

Figure 24a shows Hermit’s range lookup performance in
PostgreSQL. Similar to what we observed before, the perfor-
mance gap drops with the increase of the selectivity. When
setting the selectivity to 1.0%, Hermit is over 30% slower
than the baseline solution. The major reason is that fetch-
ing data from secondary storage is more expensive than
fetching from main memory. Figure 24b further depicts the
breakdown. Not surprisingly, TRS-Tree lookup is negligible



compared to host index lookup in PostgreSQL. Validating
false positives also take times, as our implementation ma-
terializes and then iterates the result set of the host index
lookup. One may optimize the performance by pushing the
filter operator down to the index scan.

8 RELATEDWORK

Tree index structures. B+-Tree [10] is the textbook index
for disk-oriented DBMSs and its structure is well-designed
to reduce random disk accesses. With the decrease of main
memory prices, researchers and practitioners have devel-
oped memory-friendly indexes that can efficiently leverage
the larger main memory and fast random access speed. Some
pioneering works include T-tree [27] and cache-conscious
indexes [32]. All these indexes use the hierarchical tree struc-
ture to return accurate query results in a timely manner.
However, these solutions can lead to high memory consump-
tions, causing high pressure to main-memory RDBMSs.

Succinct index structures. Sparse indexes such as col-
umn imprints [33] and Hippo [38] only store pointers to
disk pages (or column blocks) in parent tables and value
ranges in each page (or column block) to reduce the space
overhead. Column Sketch [16] indexes tables on a values-by-
value basis but compresses the values into a lossy map. The
tradeoff is that these structures can introduce false positives
in query time. BF-Tree [5] is an approximate index designed
for ordered or partitioned data. While generating unqual-
ified results, it can largely reduce the space consumption
by only recording approximate tuple locations. The learned
index [24] improves space efficiency by exploiting data dis-
tribution using machine learning techniques. It yields good
performance but requires a long training phase to generate
the data structure. Zhang et al. [41] proposed a new range
query filtering mechanism for log-structured merge trees.
Stonebraker [34] introduced the partial index that stores

only a subset of entries from the indexed columns to reduce
the number of leaf nodes. Idreos et al. [17, 18] developed a
series of techniques called database cracking to adaptively
generate indexes based on the query workload. Specifically,
partial sideways cracking [17] introduces an index called
partial maps which consists of several self-organized chunks.
These chunks can be automatically dropped or re-created
according to the remaining storage space such that the max-
imum available space is exploited. Athanassoulis et al. [6]
later proposed the RUM conjecture to capture the relations
among read, update, and memory overhead.

Compression techniques [12, 42] drop redundant data in-
formation to save storage space. However, these techniques
require extra time for compressing data ahead of time and de-
compressing data at query time. This compromises the query
performance and index maintenance speed. In addition, they

still store the pointers for tuples such that the amount of
saved memory is limited.

Secondary index selection. Several works have also dis-
cussed how to select secondary indexes given a fixed amount
of space budget. A group of researchers at Microsoft pro-
posed a mechanism that analyzes a workload of SQL queries
and suggests suitable indexes [9]. They further presented an
end-to-end solution to address the problem of selecting ma-
terialized views and indexes [4]. Researchers at IBMmodeled
the index selection problem as a variant of the knapspack
problem, and introduced an index recommendation mech-
anism into the DB2. Most recently, Pavlo et al. [31] investi-
gated this problem using a machine learning based approach.

Column correlations. BHUNT [7] automatically discov-
ers algebraic constraints between pairs of columns. By re-
laxing the dependency, CORDS [19] uses sampling to dis-
cover correlations and soft functional dependencies between
columns. In addition, CORDS recommends groups of columns
onwhich tomaintain certain simple joint statistics. Researchers
on data cleansing also put lots of efforts on detecting func-
tional dependencies including soft dependency and approxi-
mate dependency [8, 25]. CORADD [21] proposes a correlation-
aware database designer to recommend the best set of ma-
terialized views and indexes for given database size con-
straints. Correlation Maps [20] (CM) is a data structure that
expresses the mapping between correlated attributes for ac-
celerating unindexed column access. While sharing a similar
idea of leveraging column correlations to save space,Hermit
does not require using clustered columns; more importantly,
its ML-enhanced TRS-Tree structure can adaptively and
dynamically model both complex correlations and outliers,
hence yielding better performance in many cases.

Cardinality estimation. Cardinality estimation plays a
crucial role in RDBMS query optimizers. Column correlation
is the most common reason that encumbers the estimation.
Sample views [26] and PSALM [40] use sampling methods to
detect the column correlation. Recent projects [28, 29] start
treating column semantics as a black box and use machine
learning models to learn cardinalities from query feedbacks.
Kipf et al. [22] opt to use deep learning techniques to learn
cardinalities for join queries.

9 CONCLUSIONS

We have introduced Hermit, a new secondary indexing
mechanism that exploits column correlations to reduce index
space consumption. Hermit utilizes TRS-Tree, a succinct,
ML-enhanced tree structure to adaptively and dynamically
capture complex correlations and outliers. Our extensive ex-
perimental study has confirmed Hermit’s effectiveness in
both main-memory and disk-based RDBMSs.



REFERENCES

[1] libpqxx. http://pqxx.org/development/libpqxx/.
[2] PostgreSQL. http://www.postgresql.org.
[3] Simple linear regression. https://en.wikipedia.org/wiki/Simple_linear_

regression.
[4] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated Selection

of Materialized Views and Indexes for SQL Databases. In VLDB, 2000.
[5] M. Athanassoulis and A. Ailamaki. BF-Tree: Approximate Tree Index-

ing. PVLDB, 7(14), 2014.
[6] M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Aila-

maki, and M. Callaghan. Designing Access Methods: The RUM Con-
jecture. In EDBT, 2016.

[7] P. G. Brown and P. J. Hass. BHUNT: Automatic Discovery of Fuzzy
Algebraic Constraints in Relational Data. In VLDB, 2003.

[8] L. Caruccio, V. Deufemia, and G. Polese. Relaxed Functional Depen-
dencies - A Survey of Approaches. IEEE TKDE, 28(1), 2016.

[9] S. Chaudhuri and V. R. Narasayya. An Efficient, Cost-Driven Index
Selection Tool for Microsoft SQL Server. In VLDB, 1997.

[10] D. Comer. The Ubiquitous B-Tree. CSUR, 11(2), 1979.
[11] P. Godfrey, J. Gryz, and C. Zuzarte. Exploiting Constraint-Like Data

Characterizations in Query Optimization. In SIGMOD, 2001.
[12] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing Relations

and Indexes. In ICDE, 1998.
[13] G. Graefe et al. Modern B-Tree Techniques. Foundations and Trends®

in Databases, 3(4):203–402, 2011.
[14] G. Graefe, H. Volos, H. Kimura, H. A. Kuno, J. Tucek, M. Lillibridge,

and A. C. Veitch. In-Memory Performance for Big Data. PVLDB, 8(1),
2014.

[15] J. Gryz, B. Schiefer, J. Zheng, and C. Zuzarte. Discovery andApplication
of Check Constraints in DB2. In ICDE, 2001.

[16] B. Hentschel, M. S. Kester, and S. Idreos. Column Sketches: A Scan
Accelerator for Rapid and Robust Predicate Evaluation. In SIGMOD,
2018.

[17] S. Idreos, M. L. Kersten, and S. Manegold. Self-Organizing Tuple
Reconstruction in Column-Stores. In SIGMOD, 2009.

[18] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging What’s
Cracked, Cracking What’s Merged: Adaptive Indexing in Main-
Memory Column-Store. PVLDB, 4(9), 2011.

[19] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga. CORDS: Au-
tomatic Discovery of Correlations and Soft Functional Dependencies.
In SIGMOD, 2004.

[20] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik. Correlation
Maps: A Compressed Access Method for Exploiting Soft Functional
Dependencies. VLDB, 2(1), 2009.

[21] H. Kimura, G. Huo, A. Rasin, S. Madden, and S. B. Zdonik. CORADD:
Correlation Aware Database Designer for Materialized Views and
Indexes. PVLDB, 3(1-2), 2010.

[22] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned
Cardinalities: Estimating Correlated Joins with Deep Learning. In
CIDR, 2019.

[23] J. Kivinen and H. Mannila. Approximate Inference of Functional
Dependencies from Relations. Theoretical Computer Science, 149(1),
1995.

[24] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The Case for
Learned Index Structures. In SIGMOD, 2018.

[25] S. Kruse and F. Naumann. Efficient Discovery of Approximate Depen-
dencies. PVLDB, 11(7), 2018.

[26] P. Larson, W. Lehner, J. Zhou, and P. Zabback. Cardinality Estimation
Using Sample Views with Quality Assurance. In SIGMOD, 2007.

[27] T. J. Lehman and M. J. Carey. A Study of Index Structures for Main
Memory Database Management Systems. In VLDB, 1986.

[28] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality Estima-
tion Using Neural Networks. In CASCON, 2015.

[29] T. Malik, R. C. Burns, and N. V. Chawla. A Black-Box Approach to
Query Cardinality Estimation. In CIDR, 2007.

[30] T. Papenbrock, J. Ehrlich, J. Marten, T. Neubert, J. Rudolph, M. Schön-
berg, J. Zwiener, and F. Naumann. Functional Dependency Discovery:
An Experimental Evaluation of Seven Algorithms. PVLDB, 8(10), 2015.

[31] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah, et al. Self-Driving Database Management
Systems. In CIDR, 2017.

[32] J. Rao and K. A. Ross. Making B+-Trees Cache Conscious in Main
Memory. In SIGMOD, 2000.

[33] L. Sidirourgos and M. L. Kersten. Column Imprints: A Secondary Index
Structure. In SIGMOD, 2013.

[34] M. Stonebraker. The Case for Partial Indexes. Sigmod Record, 18(4),
1989.

[35] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley. DB2
Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes.
In ICDE, 2000.

[36] A. D. Well and J. L. Myers. Research design & statistical analysis.
Psychology Press, 2003.

[37] Y. Wu, J. Arulraj, J. Lin, R. Xian, and A. Pavlo. An Empirical Evaluation
of In-Memory Multi-Version Concurrency Control. PVLDB, 10(7), 2017.

[38] J. Yu and M. Sarwat. Two Birds, One Stone: A Fast, yet Lightweight,
Indexing Scheme for Modern Database Systems. PVLDB, 10(4), 2016.

[39] H. Zhang, D. G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, and R. Shen.
Reducing the Storage Overhead of Main-Memory OLTP Databases
with Hybrid Indexes. In SIGMOD, 2016.

[40] H. Zhang, I. F. Ilyas, and K. Salem. PSALM: Cardinality Estimation in
the Presence of Fine-Grained Access Controls. In ICDE, 2009.

[41] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo. SuRF: Practical Range Query Filtering with Fast Succinct
Tries. In SIGMOD, 2018.

[42] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz. Super-Scalar RAM-
CPU Cache Compression. In ICDE, 2006.

A APPLICATIONS IN THE EXPERIMENTS

Synthetic: The synthetic data contains one single table with
four 8-byte numeric columns, namely colA, colB , colC , and colD .
Columns colB and colC are correlated, as colB ’s values are generated
by a certain correlation function from colC , i.e. colB = Fn(colC ).
We use two types of correlation functions: Linear function and
Sigmoid function. We also inject uniformly distributed noisy data to
col_B. By default, we inject 1% noises (percent = abnormal tuples

cardinality ).
We have already built a primary index on colA and a secondary
index on colB . The application frequently queries on colC to retrieve
values on colD . Our experiments build indexes on colC .

Stock: This application records the market price of 100 stocks
in the U.S. stock market over the last 60 years. We store over 15,000
rows containing datetime and daily highest and lowest prices of
these 100 stocks in a wide table (201 columns in total). We set the
entries to NULL if certain readings are not available. Each pair of
the highest and lowest price columns forms a simple near-linear
correlation. We build a primary index on the datetime column,
and a set of secondary indexes on each lowest price column. The
application continuously issues queries to those unindexed highest
price columns. The queries are like: “during which time periods do
Stock X’s highest price fall between Y and Z?”. Our experiments build
indexes on all the unindexed columns and evaluate the performance.

http://pqxx.org/development/libpqxx/
http://www.postgresql.org
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression


Sensor: This application monitors chemical gas concentration
using 16 sensors. We store 4,208,260 rows containing the timestamp,
the 16 sensor readings, and the reading average in a single table (18
columns in total). These 16 sensor reading columns and the average
reading column form a non-linear correlation. We have constructed
one index on the average reading column. The application continu-
ously queries one of those 16 unindexed sensor reading columns.
The queries are like: “during which time period do the readings in
Sensor X fall between Y and Z?”. Our experiments build indexes on
all the unindexed columns and evaluate the performance.

B MAINTENANCE

TRS-Tree can easily support concurrent insertions. As a single
insert/delete/update operation only affects at most one leaf node,
TRS-Tree can easily guarantee the structure consistency by using
concurrent hash tables to implement the leaf nodes’ outlier buffers.

TRS-Tree also enables online structure reorganization at run-
time without incurring much overhead to any concurrent opera-
tions. Unlike conventional concurrent tree-based structures,TRS-Tree
does not implement latch coupling, which can be overly complicated
and expensive for TRS-Tree. Instead, it adopts a coarse-grained
latching protocol to maximize concurrency. The intuition behind
this decision is that insert/delete/update operations in TRS-Tree
never trigger cascading node modifications, and the reorganization
happens infrequently and can be processed with low latency.

TRS-Tree uses a flag to identify the reorganization phase. A
dedicated background thread starts the reorganization by setting
the flag to true. When observing this flag, any concurrent insert /
delete / update operations append their modifications to a temporal
buffer to avoid phantom problems. The background thread then
scans and retrieves all corresponding entry pairs and subsequently
creates the new tree nodes. Before installing these nodes to TRS-
Tree, the background thread further holds a coarse-grained latch
on the entire tree and applies all the changes in a temporal buffer.
The latch is released once the new nodes are installed.

C COMPARISON

Compare with Correlation Maps (CM). TRS-Tree in Hermit is
a ML-enhanced tree index. CM [20] adopts a map-like structure
which stores the bucket mappings between correlated columns.
Both CM and HERMIT leverage column correlations to save space.
But we find that these two proposals are drastically different.
• TRS-Tree captures correlations using tiered curve fitting and

handles outliers. This makes it robust to noisy data which is preva-
lent in real-world applications. In contrast, CM does not include
any scheme to handle outliers, and hence its performance can drop
when confronting sparsely distributed noisy data.
•TRS-Tree adaptively constructs its internal structures and auto-

matically decides the partition granularity. It dynamically maintains
its internal structures, and performs reorganization in the presence
of large amounts of insert/delete/update operations. In comparison,
CM relies on its tuning advisor to decide the granularity for its
single-layer buckets by building multiple histograms beforehand.
It is unknown how CM adapts to dynamic workload where the
underlying data drastically change over time.
• Hermit is a general secondary indexing mechanism and can

exploit multiple correlations on the same table. In contrast, CM can

only exploit correlations when there is a clustered index on the
host column. At most one clustered index can exist in a table.

We also empirically compare Hermit with CM in Appendix E.
Compare with BF-Tree. BF-Tree [5] is an approximate index

that exploits implicit ordering and clustering in the underlying data
to reduce storage overhead. It adopts the same tree structure with
B+ Tree but stores a set of Bloom Filters in its leaf nodes. Those
Bloom Filters record the approximate physical locations of values.
Although both BF-Tree and Hermit tend to reduce index size by
introducing false positives, they act very differently.
• BF-Tree exploits implicit ordering and clustering in the under-

lying data to reduce the index size.Hermit leverages the correlation
between the host column and the indexed column to shrink its size
on the indexed column.
• BF-Tree requires that the underlying data should be ordered or

at least have some clusterings. Hermit does not have any specific
requirement for the data distribution. It works for any data order.
• BF-Tree stores Bloom Filters and disk page ranges in its leaf

nodes. For every key lookup on the indexed column, these Bloom
Filters may return "true" for some non-existing keys and thus result
in page scans on the false positive disk pages. The TRS-Tree in
Hermit stores ML models (linear regression in our paper) in leaf
nodes. This range may include some false positive values which
need to be pruned later.

D MORE DISCUSSIONS

D.1 Correlation Discovery

Hermit fully relies on the underlying RDBMS or users to per-
form correlation discovery. There has been a flurry of systems that
addressed the problem of correlation (or functional dependency)
discovery in different ways. In the past two decades, researchers
extensively studied how to automatically find all functional depen-
dencies (including those among composite columns) in a database.
To accelerate the discovery, they [8, 19, 23, 25, 30] opt to leverage
specific rules to prune columns or compute approximate coefficients
based on samples.

In practice, most commercial RDBMSs still largely rely on “hu-
man knowledge” to discover possibly correlated columns because
of the huge search space of column combinations. A database ad-
ministrator (DBA) can identify candidate columns that exhibit se-
mantic relationships, then evaluate the correlation using different
correlation coefficients, including Pearson coefficient and Spearman
coefficient [36]. Once the coefficient reaches a certain predefined
threshold, the DBA can recommend this correlation information to
the database optimization module.

Now let us discuss correlation types Hermit may capture. Fig-
ure 25 shows three different functions: (1) linear (e.g., y = x) (2)
monotonic (e.g., y = siдmoid (x )) (3) non-monotonic (e.g., y =
sin(x )). We do not consider noisy data at this moment. TRS-Tree
can perfectly index the correlations in both (1) and (2) since it di-
rectly navigates a key lookup to a single value on the indexed host
column. A DBA can easily capture these two correlations using
Pearson coefficient and Spearman coefficient, respectively (coeffi-
cient = 1). However, Hermit cannot yield good performance for
non-monotonic correlation like sin function because a single value



−4 −2 0 2 4

X

−5

−3

−1

1

3

5

Y

(a) y = x

−4 −2 0 2 4

X

0.0

0.2

0.4

0.6

0.8

1.0

Y

(b) y = siдmoid (x )

−10 −5 0 5 10

X

−1.0

−0.6

−0.2

0.2

0.6

1.0

Y

(c) y = sin(x )

Figure 25: Three different correlation functions.
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Figure 26: Dow-Jones and S&P 500 values. In (b), Green dots

falling beyond red lines are identified as outliers.

on the host column can be mapped to many values on the target
column. Consequently, TRS-Tree can generate many false positives,
resulting in low performance. The DBA can detect a non-monotonic
correlation using Spearman coefficient (coefficient = 0).

Hermit captures correlations and handles outliers. This makes
Hermit applicable to cases where nice difference bounding does not
exist. Figure 26a shows the value trace of Dow-Jones and S&P 500
during the years 1991 to 2011. While the two indices are correlated
in most years, we observe some major shifts in certain months or
years.Hermit handles them by directly identifying andmaintaining
them in outlier buffers, and hence eliminate some false positives.

D.2 Optimization

Sampling-based outlier estimation. During the index construc-
tion, a TRS-Tree needs to compute the linear function parameters,
namely slope β and intercept α , of the leaf nodes using the standard
linear regression formula (see Section 4.1). Sometimes the default
construction algorithm shown in Algorithm 1 unnecessarily com-
putes these parameters even if the corresponding node later splits
due to too many outliers. We adopt a sampling-based strategy to
avoid this problem. Before performing the parameter computation,
our optimization algorithm randomly samples the data (by default
5%) covered by the range and runs the simple linear regression on
them. Within the sample set, if the number of outliers has already
exceeded the pre-defined threshold, then the construction directly
partitions the range. This helps us make the decision quickly.

Multi-threaded index construction. Algorithm 1 shows how
we construct TRS-Tree using a single thread. Observing the popu-
larity of massively parallel processors, we can now leverage multi-
threading to speed up the construction algorithm. Different from
B-tree, Hermit constructs its internal and leaf nodes following
a top-down scheme. This means that we can parallelize the tree
construction without confronting any synchronization points. As-
suming that the index fanout is set to k , we can easily parallelize the
splitting and computation of TRS-Tree’s every single node using k

threads. These threads proceed independently without incurring
any inter-thread communication.

D.3 Complex Machine Learning Models

Table 1: Training time for different ML models

Number of tuples 1 K 10 K 100 K
Linear regression 0.42 ms 0.81 ms 3.2 ms

SVR (RBF) 0.09 s 4.5 s > 60 s
SVR (linear) 0.28 s 29 s > 60 s

SVR (polynomial) 0.29 s 24 s > 60 s

Hermit performs a linear regression in each TRS-Tree node
which costs a scan of corresponding tuples. Actually, TRS-Tree’s
structure is also flexible enough to adopt more complex models such
as Support Vector Regression (SVR) and neural networks. However,
although these models may yield less false positives, training these
models takes tremendous time (orders of magnitude slower than
linear regression) if the table size increases significantly.

To prove that, we run a set of machine learning models on differ-
ent scales of data and report the training time in Table 1. As depicted
in the table, training linear regression models only takes several
milliseconds while training SVR models with different kernels in-
cluding RBF, linear and polynomial is at least 200 times slower.
Having said that, we believe that researchers and practitioners still
can easily extend Hermit to incorporate other models and fit in
their specific scenarios.

In addition, a recent paper featuring learned indexes [24] dis-
cusses the cases of using complex machine learning models such as
neural networks and multivariate regression models to predict lo-
cations of keys. As opposed to learned indexes, Hermit models the
correlation between two columns and leverages the curve-fitting
technique to adaptively create simple yet customized ML models
for different regions (TRS-Tree tree nodes).

D.4 Hermit on Secondary Storage

Although the storage overhead of an index may not seem too ex-
pensive on traditional Hard Disk Drives (HDDs), the dollar cost
increases dramatically when the index is deployed on modern stor-
age devices (e.g., Solid State Drives and Non-Volatile Memory) be-
cause they are still more than an order of magnitude expensive than
HDDs. This is also an important issue when deploying RDBMSs
on the cloud, where the customers are charged on a pay-as-you-go
basis. Hermit is a generic indexing mechanism designed for both
main-memory and disk-based RDBMSs. Deploying it on precious
secondary storage such as SSD can save considerable storage bud-
get and still exhibit comparable lookup performance as opposed to
B+Tree. Our experiment in Section 7.8 also confirmed this claim.

D.5 Complex SQL Queries

As a replacement of classic B+-tree-based secondary indexes, Her-
mit is general enough and can be used in any complex queries when-
ever a classic secondary index is used. Even for complex queries
like join, RDBMSs can still use Hermit to execute local predicate,
consequently accelerating the processing of the entire query plan.
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Figure 27: Range lookup throughput with different percentage of injected noises (Synthetic-Linear).
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(e) Host bucket size = 212

Figure 28: Memory consumption with different percentage of injected noises (Synthetic-Linear).
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Figure 29: Range lookup throughput with different percentage of injected noises (Synthetic-Sigmoid).
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Figure 30: Memory consumption with different percentage of injected noises (Synthetic-Sigmoid).

E EXPERIMENTS

We compare Hermit with an existing solution, namely Correlation
Maps (CM). We implemented CM faithfully based on its original
paper. Instead of implementing CM’s tuning advisor, we performed
parameter sweeping and tuned the bucket size in both target and
host columns to evaluate the performance. Throughout this section,
we use host bucket size to refer to the bucket size in host column.
We use CM-X to denote CM with the bucket size in target column
set to X (e.g., CM-16 means the bucket size in target column is 16).

Figure 27 and Figure 28 show the range lookup throughput (se-
lectivity=0.01%) and memory consumption of Hermit, CM, and
the B+-tree-based baseline solution using Synthetic-Linear. We
change the percentage of injected noises from 0% to 10%. Since CM
was designed for disk-based RDBMSs, [20] showed that CM usually
performs better with a smaller bucket size. Now CM is adapted
to in-memory databases, this does not always hold true any more.
The host index look up and base table access are much faster now
in memory, thus the overhead of accessing the CM structure itself
plays a bigger role in the overall performance. A smaller bucket
size means more buckets in CM and accordingly more overhead for
accessing the CM structure. We also observed a compute-storage

tradeoff in CM. While CM’s lookup throughput drops with the in-
crease of bucket size, its memory consumption is actually reduced.
Another key observation in these figures is that CM’s performance
can drop significantly with the increase of percentage of injected
noises. This is because CM has to maintain mappings among buck-
ets for every single entry pairs in the target and host columns. Even
with small amount of sparsely distributed outliers, CM in the ex-
treme case may have to scan the entire table to remove outliers (just
consider the case where the outliers are scattered to every single
bucket in the target column). Compared to CM, Hermit can sustain
a high throughput even when the noise percentage is increased to
10%. This is because CM can identify and maintain outliers in leaf
nodes’ outlier buffers. The tradeoff is that its memory consumption
can increase. Overall, Hermit and CM both can reduce memory
consumption compared to B+-tree. However, Hermit can achieve
much better performance in the presence of outliers, and it saves
much more memory as the correlation information is well captured
by the tiny linear regression models.

Figure 29 and Figure 30 further show the experiment results with
Synthetic-Sigmoid. We also observed similar results in this set
of experiments. The only difference is that Hermit needs to spend
more memory to capture correlations.
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