
TRANSACTION MANAGEMENT IN MULTI-CORE

MAIN-MEMORY DATABASE SYSTEMS

YINGJUN WU

(Bachelor of Science, South China University of Technology)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2017

Supervisor:

Professor Kian-Lee Tan

Examiners:

Associate Professor Bingsheng He

Associate Professor Yong Meng Teo

Professor Alan David Fekete, University of Sydney

Declaration

I hereby declare that this thesis is my original work and it has been written

by me in its entirety. I have duly acknowledged all the sources of informa-

tion which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

Yingjun Wu

May 2017

iii

Acknowledgments

This thesis will never have been completed without the generous assistance

offered by many people to whom I owe a lot. While it is difficult for me to

enumerate all the people to whom I am indebted, I would like to list a few

of them below to acknowledge their selfless help.

First and foremost, I would like to thank my Ph.D. advisor Kian-Lee Tan. I

can hardly find any words to describe how influential he is to my entire Ph.D.

journey. Kian-Lee is the person that I can always trust and freely share my

mind with. He always had time to discuss with me and gave me freedom

to pursue my own research agenda. I feel extremely grateful for having

him standing by me whenever I confront any problems or troubles in either

research or career planning. I also thank him for encouraging me to explore

any research topic that I am interested in, even if some of these topics,

for example, transaction processing, seem to be challenging to investigate

given my insufficient background on database kernels at the very beginning.

Kian-Lee also generously supported my trip to Microsoft Research Asia and

Carnegie Mellon University, where I significantly improved my research

skills. To be honest, I can never find a better advisor.

Because of Kian-Lee, I am fortunate to have the opportunity to work with

Andrew Pavlo, a rising star in the database community. Andy is undoubtedly

a role model for young researchers like me with the focus of research topics

he is working on. His energy and passion on database systems has always

inspired me to chase for “the best paper ever” on database systems. Andy,

thanks for all the suggestions and assistance in my work as well as my future

career.

v

Even though Chee-Yong Chan was not an official co-advisor, he has actively

advised me for the past several years. He is very professional and rigorous on

research works, and his advices and feedbacks has significantly sharpened

my research skills.

David Maier is probably the first person that led me to the world of systems

research. During his visit at NUS, he kept discussing research problems

with me and guided me (with Kian-Lee) to publish the first research paper I

had in my Ph.D. journey. I am very glad to have him encourage me to dive

deeper into the research world.

I would like to thank Zhengping Qian, my mentor at Microsoft Research

Asia, for his patience in teaching me basic knowledge on systems research.

I will never have enough guts to continue my Ph.D. journey without his

continuous encouragement.

I feel extremely fortunate to have Bingsheng He, Yong-Meng Teo, and

Alan Fekete to be my thesis examiners. Their insightful comments helped

significantly improve the quality of this thesis. Beyond this thesis, they have

actually provided me selfless assistance for a long time. Bingsheng is always

glad to discuss new research directions with me, and Yong-Meng generously

helped arrange the experiment machine for me. While not physically at

NUS, Alan is one of my favorite person to interact with during conferences,

and his pioneering research on transaction processing has inspired several

of my works.

There are many others that I need to appreciate during my Ph.D. journey.

At NUS, I am lucky to be a member of the NUS Database Group, where

I made wonderful friendship with the group members. During my visit at

CMU, members of the CMU Database Group helped me in both research

and personal life, and I really feel thankful to have them debug Peloton with

me. Researchers and interns at MSRA keep encouraging me overcoming all

kinds of difficulties and saving me a lot of troubles. Richard Ma and Zhenjie

vi

Zhang guided me to choose research topics and advisors when I was in the

first semester of my Ph.D. study. I sincerely thank them for teaching me

how to be a good researcher.

Last, but most importantly, I need to thank my family for their enduing

support throughout this long and stressful period. I owe them too much.

vii

Abstract

The emergence of large main memories and massively parallel processors

has triggered the development of multi-core main-memory database manage-

ment systems (DBMSs). Although the reduction of disk accesses helps the

main-memory DBMSs shorten the single-thread execution time of on-line

transactions, scaling these DBMSs on modern multi-core machines remains

to be notoriously difficult. This is because processing massive amounts of

concurrent transactions can confront several performance bottlenecks inher-

ited from different DBMS components, and these bottlenecks altogether put

a strict constraint on the scalability of the DBMSs.

In this thesis, we describe the design, implementation, and evaluation of

multi-core main-memory DBMSs that achieve high performance for trans-

action processing. As concurrency control protocol is the central component

for coordinating concurrent transactions, we first present the design of trans-

action healing, a robust scheme that exploits program semantics to scale

the conventional optimistic concurrency control protocol towards dozens of

cores even under highly contended on-line transaction processing (OLTP)

workloads. To ensure durability property, the DBMSs have to frequently

persist transaction logs into secondary storage during the system runtime.

Witnessing this potential performance bottleneck, we then present PACMAN,

a parallel transaction-level logging and recovery mechanism that leverages

program analysis to enable speedy failure recovery without introducing any

costly overhead to the transaction processing. Observing that most exist-

ing DBMSs adopt multi-version concurrency control (MVCC) protocols

for increased degrees of concurrency, we further present a comprehensive

performance study of DBMS’s transaction management schemes to under-

ix

stand the major bottlenecks for processing varies types of workloads. We

implemented these works on two multi-core main-memory DBMSs, namely

Cavalia and Peloton, and the experiment results show that our mechanisms

enable modern DBMSs to scale towards dozens of cores when processing

various types of transactional workloads.

x

Contents

List of Figures xv

List of Tables xxi

1 Introduction 1

2 Literature Review 11

2.1 DBMS Architectures on Modern hardware 11

2.2 Concurrency Control Protocol 13

2.2.1 Main-Memory Concurrency Control Protocol 13

2.2.2 Optimistic Concurrency Control 14

2.2.3 Program Analysis 15

2.2.4 Transactional Memory 15

2.3 Logging and Recovery 16

2.3.1 Checkpointing 16

2.3.2 Logging 17

2.3.3 Recovery 17

2.4 Multi-Version Transaction Management 18

2.4.1 Concurrency Control Protocol 18

2.4.2 Version Storage 18

2.4.3 Garbage Collection 19

2.4.4 Index Management 19

3 Transaction Healing: A Robust Concurrency Control Protocol on Multi-

Cores 21

3.1 Introduction 21

3.2 Transaction Healing Overview 23

3.2.1 Optimistic Concurrency Control 23

xi

Contents

3.2.2 Transaction Healing 25

3.2.3 Transaction Healing Overview 26

3.3 Static Analysis 26

3.4 Runtime execution 28

3.4.1 Tracking Operation Behaviors 28

3.4.2 Restoring Non-Serializable Operations 30

3.4.3 Committing Transactions at Scale 35

3.4.4 Guaranteeing Serializability 36

3.4.5 Optimizing Dependent Transactions 37

3.4.6 Optimizing Independent Transactions 39

3.4.7 Supporting Database Operations 39

3.4.8 Supporting Ad-Hoc Transactions 41

3.5 Evaluation 42

3.5.1 Existing Performance Bottlenecks 43

3.5.2 Scalability 46

3.6 Summary 54

4 PACMAN: A Parallel Logging and Recovery Mechanism on Multi-Cores 57

4.1 Introduction 57

4.2 DBMS durability 60

4.2.1 Logging 60

4.2.2 Checkpointing 61

4.2.3 Failure Recovery 62

4.2.4 Performance Trade-Offs 62

4.3 PACMAN Overview 63

4.4 PACMAN Design 65

4.4.1 Static Analysis 65

4.4.2 Recovery Execution Schedules 69

4.4.3 Dynamic Analysis 73

4.4.4 Recovery Runtime 76

4.4.5 Ad-Hoc Transactions 78

xii

Contents

4.5 Discussion 79

4.6 Implementation 79

4.6.1 Logging 80

4.6.2 Recovery 80

4.6.3 Possible Optimizations 81

4.7 Evaluation 81

4.7.1 Logging 82

4.7.2 Recovery 87

4.7.3 Performance Analysis 93

4.8 Conclusion 95

5 Multi-Version Transaction Management: An Evaluation on Multi-Cores 97

5.1 Introduction 97

5.2 Background 100

5.2.1 Overview 100

5.2.2 DBMS Meta-Data 101

5.3 Concurrency Control Protocol 102

5.3.1 Timestamp Ordering (MVTO) 103

5.3.2 Multi-version Optimistic Concurrency Control (MVOCC) 104

5.3.3 Two-phase Locking (MV2PL) 105

5.3.4 Serializable Snapshot Isolation (SSI) 106

5.3.5 Discussion 106

5.4 Version Storage 108

5.4.1 Append-only Storage 109

5.4.2 Time-Travel Storage 110

5.4.3 Delta Storage 111

5.4.4 Discussion 111

5.5 Garbage Collection 112

5.5.1 Tuple-level Garbage Collection 113

5.5.2 Transaction-level Garbage Collection 114

5.5.3 Discussion 115

xiii

Contents

5.6 Index Management 115

5.6.1 Logical Pointers 116

5.6.2 Physical Pointers 117

5.6.3 Discussion 117

5.7 Experimental Analysis 118

5.7.1 Benchmarks 118

5.7.2 Concurrency Control Protocols 119

5.7.3 Version Storage 124

5.7.4 Garbage Collection 129

5.7.5 Index Management 132

5.8 Discussion 133

5.9 Summary 136

6 Future Works 137

7 Conclusion 139

References 142

xiv

List of Figures

3.1 Bank-transfer example. 24

3.2 A comparison between OCC and transaction healing. 25

3.3 Program dependency graph. Solid lines represent key dependencies, while

dashed lines represent value dependencies. 27

3.4 Thread-local data structures. 29

3.5 Healing inconsistency for the bank-transfer example. 33

3.6 False invalidation. Transaction T1 reads the first column while transaction

T2 writes the nth one. T1 is invalidated although the write installed by T2

does not affect T1’s correctness. 37

3.7 Validation order in the TPC-C benchmark. The stored procedures modeled

in this benchmark touch Warehouse table and District table before

accessing any other tables. 38

3.8 transaction throughput with different degree of contentions. The number of

threads is set to 46. 45

3.9 Overhead of the abort-and-restart mechanism with different degree of con-

tentions. The number of threads is set to 46. 46

3.10 transaction throughput with different degree of contentions. The number of

threads is set to 46. 47

3.11 Transaction throughput for TPC-C benchmark with different degree of

workload contentions. 48

3.12 Transaction throughput for TPC-C benchmark with different percentage of

cross-partition transactions. 49

3.13 Transaction throughput with different percentages of ad-hoc transactions.

The number of threads is set to 46. 51

xv

List of Figures

3.14 Transaction throughput with different degree of contentions. The number of

threads is set to 24. 52

4.1 Workflow of PACMAN. 64

4.2 Bank-transfer example. (a) Stored procedure. (b) Flow (solid lines) and data

(dashed lines) dependencies. 66

4.3 Procedure slices in bank-transfer example. 68

4.4 Procedure slices in bank-deposit example. 70

4.5 (a) and (b): Local dependency graphs for Transfer and Deposit pro-

cedures. (c): Global dependency graph. Slices within the same dashed

rectangle belong to the same block. Solid lines represent inter-block depen-

dencies. 70

4.6 Execution schedule for a log batch containing three transactions. 71

4.7 Execution of piece-set PSβ containing three transaction pieces. 74

4.8 Exploiting runtime information to identify accessed tuples in the execution of

piece-set PSβ . The flow dependencies (depicted by curved arrows) between

operations are known from static analysis. 75

4.9 Synchronous execution vs pipelined execution for three log batches. Each

rectangle represents a piece-set in an execution schedule. 76

4.10 Recovery runtime of PACMAN. The workload distribution over the piece-sets

of each block (Bα, Bβ , Bγ , and Bδ) in the GDG is 20%, 40%, 20%, and 20%. 77

4.11 Throughput and latency comparisons during transaction processing. PL, LL,

and CL stand for physical logging, logical logging, and command logging,

respectively. 83

4.12 Logging with ad-hoc transactions. 85

4.13 Performance of checkpoint recovery. 89

4.14 Performance of log recovery. 90

4.15 Latching Bottleneck in tuple-level log recovery schemes. 91

4.16 Overall performance of database recovery. 92

4.17 Database recovery with ad-hoc transactions. 92

4.18 Effectiveness of static analysis. 94

xvi

List of Figures

4.19 Effectiveness of dynamic analysis. 94

4.20 Log recovery time breakdown. 96

5.1 Tuple Format – The basic layout of a physical version of a tuple. 101

5.2 Concurrency Control Protocols – Examples of how the protocols process

a transaction that executes a READ followed by an UPDATE. 102

5.3 Version Storage – This diagram provides an overview of how the schemes

organize versions in different data structures and how their pointers create

version chains in an in-memory multi-version DBMS. Note that there are

two variants of the append-only scheme that differ on the ordering of the

version chains. 108

5.4 Garbage Collection – Overview of how to examine the database for expired

versions. The tuple-level GC scans the tables’ version chains, whereas the

transaction-level GC uses transactions’ write-sets. 112

5.5 Index Management – The two ways to map keys to tuples in a multi-version

DBMS are to use logical pointers with an indirection layer to the version

chain HEAD or to use physical pointers that point to an exact version. 116

5.6 Scalability Bottlenecks – Throughput comparison of the concurrency con-

trol protocols using the read-only YCSB workload with different number of

operations per transaction. 119

5.7 Transaction Contention – Comparison of the concurrency control proto-

cols (40 threads) for the YCSB workload with different workload/contention

mixtures. Each transaction contains 10 operations. 120

5.8 Heterogeneous Workload (without READ ONLY) – Concurrency control

protocol comparison for YCSB (θ=0.8). The read-write portion executes a

update-intensive mixture on 20 threads while scaling the number of read-only

threads. 122

5.9 Heterogeneous Workload (with READ ONLY) – Concurrency control pro-

tocol comparison for YCSB (θ=0.8). The read-write portion executes a

update-intensive mixture on 20 threads while scaling the number of read-

only threads. 123

xvii

List of Figures

5.10 TPC-C – Throughput and abort rate comparison of the concurrency control

protocols with the TPC-C benchmark. 123

5.11 Non-Inline Attributes – Evaluation of how to store non-inline attributes in

the append-only storage scheme using the YCSB workload with 40 DBMS

threads and varying the number of attributes in a tuple. 124

5.12 Version Chain Ordering – Evaluation of the version chains for the append-

only storage scheme using the YCSB workload with 40 DBMS threads and

varying contention levels. 125

5.13 Transaction Footprint – Evaluation of the version storage schemes us-

ing the YCSB workload (θ=0.2) with 40 DBMS threads and varying the

percentage of update operations per transaction. 126

5.14 Attributes Modified – Evaluation of the version storage schemes using

YCSB (θ=0.2) with 40 DBMS threads and varying the number of the tuples’

attributes that are modified per update operation. 126

5.15 Attributes Accessed – Evaluation of the version storage schemes using

YCSB (θ=0.2) with 40 DBMS threads and varying the number of the tuples’

attributes that are accessed per read operation. 127

5.16 Memory Allocation – Evaluation of the memory allocation effects to the

version storage schemes using the YCSB workload with 40 DBMS threads

and varying the number of separate memory spaces. 127

5.17 TPC-C – Throughput and latency comparison of the version storage schemes

with the TPC-C benchmark. 128

5.18 Tuple-level Comparison (Throughput) – The DBMS’s throughput mea-

sured over time for YCSB workloads with 40 threads using the tuple-level

GC mechanisms. 130

5.19 Tuple-level Comparison (Memory) – The amount of memory that the

DBMS allocates per transaction over time (lower is better) for YCSB work-

loads with 40 threads using the tuple-level GC mechanisms. 130

xviii

List of Figures

5.20 Tuple-level vs. Transaction-level (Throughput) – Sustained throughput

measured over time for two YCSB workloads (θ=0.8) using the different

GC mechanisms. 131

5.21 Tuple-level vs. Transaction-level (Memory) – The amount of memory

that the DBMS allocates per transaction over time (lower is better) for two

YCSB workloads (θ=0.8) using the different GC mechanisms. 131

5.22 Index Management – Transaction throughput achieved by varying the

number of secondary indexes. 133

5.23 Index Management – Throughput for update-intensive YCSB with eight

secondary indexes when varying the number of threads. 133

5.24 Configuration Comparison (Throughput) – Performance of the MVCC

configurations from Table 5.1 with the TPC-C benchmark. 135

5.25 Configuration Comparison (Scan Latency) – Performance of the MVCC

configurations from Table 5.1 with the TPC-C benchmark. 135

xix

List of Tables

3.1 Transaction latency for TPC-C benchmark. The number of warehouses is

set to 4, and the number of threads is set to 46. 55

3.2 The percentage of accesses to the first, second, 10th, and 100th most popular

keys in Zipfian distributions for different values of θ. The last column shows

the abort rates of HEALING, OCC, and SILO respectively. 56

3.3 Transaction latency for Smallbank benchmark. The number of threads is set

to 24. 56

3.4 Transaction throughput when processing the TPC-C benchmark. The number

of warehouses is set to be equal to the thread count. 56

4.1 Log size comparison. 83

4.2 Overall SSD bandwidth. 85

4.3 Average transaction latency. 85

5.1 Transaction management Implementations – A summary of the design

decisions made for the commercial and research multi-version DBMSs. The

year attribute for each system (except for Oracle) is when it was first released

or announced. For Oracle, it is the first year the system included MVCC.

With the exception of Oracle, MySQL, and Postgres, all of the systems

assume that the primary storage location of the database is in memory. 99

xxi

CHAPTER 1
Introduction

Database management system (DBMS) is a software that enables clients to perform

queries for modifying and analyzing data in a coordinated manner. Since its birth in

1960s, DBMSs have been investigated by a large number of research groups in the

database community, and leading enterprises including Oracle [Oraa], IBM [ibm], and

Microsoft [mic] keep developing new DBMS products to satisfy the requirements of

the blooming commercial markets. With the burst of the Internet usage across the

world, numerous web-based database applications are deployed by business companies

to support concurrent accesses from large numbers of remote clients, and this trend

further accelerates the development of next-generation performance-critical DBMSs.

Modern database applications can generally form two different types of workloads:

on-line transaction processing (OLTP) workloads [BHG87] which are characterized

by a large amount of short-lived on-line transactions comprising one or more simple

operations, including SELECT, UPDATE, INSERT, and DELETE; and (2) on-line ana-

lytical processing (OLAP) [RG00] workloads which contain long-running transactions

involving complex analytical queries performed on a large amount of data. To provide

efficient support for OLTP workloads, systems deployed for backing the application

needs to be optimized for fast random accesses, as such optimization allows the front-end

applications to retrieve any single data tuple stored in the database within a very short

period of time. However, efficiently processing queries in OLAP workloads instead

calls for special optimization for sequential data accesses, and this is because most

analytical queries are likely to retrieve many data tuples that are sequentially stored in

the databases. To efficiently support both types of workloads, a conventional deployment

1

Chapter 1. Introduction

strategy [SAB+05] is to use a transactional DBMS for processing active transactions

issued from the clients, and updates to the databases are periodically loaded in bulks to a

data warehouse system for large-scale analytical query processing.

Unlike the design purpose of modern data warehouse systems where delayed analytical

results are usually tolerable, transactional DBMSs must be capable to respond to massive

amounts of concurrent user queries with low-latency constraints, and any unpredictable

latency spikes can cause unfriendly user experiences in time-critical applications such as

high-frequency trading and on-line gaming. With the increasing popularity of high-end

personal handheld devices and publicly accessible Internet services, modern transactional

DBMSs are expected to support even larger numbers of concurrent clients without

compromising the user experiences. Targeting at this objective, tremendous efforts have

been put into optimizing the DBMS performance.

The conventional DBMSs deployed in many commercial companies nowadays are devel-

oped following the design principles of the “classic” DBMSs built in the 1970s [BHG87].

As the computing machines available at that time were mostly equipped with only a

single CPU and small main memories, the architectures of these classic DBMSs were

well optimized for fast disk-oriented data accesses. Despite the successes achieved

during the last several decades, these DBMSs are now facing great challenges when

supporting modern web-based applications, since these applications generally require the

underlying DBMSs to achieve both high throughput and low latency when processing

huge volumes of OLTP workloads. Confronting this problem, researchers and practi-

tioners have designed several new concurrency control protocols [BHG87] to explore

higher degrees of concurrencies with limited CPU power. However, accesses to sec-

ondary storages soon turn out to be the real bottleneck of this type of DBMSs, and

system performance is strictly limited by the I/O throughput of the storage devices.

This observation subsequently leads to the development of sophisticated schemes such

as batch flushing [RG00] for reducing disk access frequencies. Unfortunately, these

techniques have to balance different performance trade-offs and cannot resolve the major

performance bottleneck fundamentally.

2

Chapter 1. Introduction

Thanks to the great achievements made in the hardware community, modern commod-

ity machines nowadays are equipped with larger main memories, and database states

composed of space-efficient data structures can be fully maintained in main memory.

This fact leads to a trend in developing fast main-memory DBMSs that are expected to

significantly boost the performance for transaction processing. The key factor that helps

improve the main-memory DBMS performance is that any redundant disk I/O that is

irrelevant to the durability property can be fully removed from the critical path of the

transaction execution, and a transaction’s lock-holding duration is likely to be remarkably

reduced due to the fast accesses to the data objects held in the main memory. In addition

to these two benefits, the absence of several heavyweight DBMS components, such as

buffer pool and lock table, also simplifies the system development, and this advantage

subsequently helps save the engineering efforts when tuning the system performance.

Other than main memories with larger capacities, the advancements in hardware tech-

nologies also brings a DBMS with massively parallel processors. Different from old-

fashioned DBMSs running on a single-core machine which is prevalent decades ago,

modern DBMSs are able to execute transactions by exploiting the processing power

of multi-CPU machines equipped with dozens of cores. The introduction of such new

hardware makes it possible to further boost the performance of main-memory DBMSs

running in a single commodity machine, as concurrent operations accessing different

in-memory objects can be performed in a non-blocking manner, and queries targeting at

the same object can also finish processing without waiting for a long time, thanks to the

high clock rate of modern computer chips.

While these newly released hardware techniques help improve the computation power

that can be exploited in a single machine, mastering this power is notoriously difficult for

modern DBMSs. This is because scaling a main-memory DBMS on multi-core machines

can confront several contention points embedded in different components across the

DBMS architecture, and the reduction of single-thread transaction processing time

essentially increases the frequency of contention point accesses, resulting in even higher

performance overhead. This fact strongly indicates the necessity for developing next-

generation DBMSs that are specifically designed for the modern multi-core and main-

3

Chapter 1. Introduction

memory settings. To fully understand the potential difficulties that may be confronted

when building modern multi-core main-memory DBMSs, we now study the performance

bottlenecks inherited from two major components in the DBMSs, namely concurrency

control protocol and logging and recovery. After that, we discuss how transaction

management schemes in multi-version DBMSs influence the system scalability.

• Concurrency Control Protocol. A concurrency control protocol permits end-

users to access a database in a multi-programmed fashion while preserving the

illusion that each of them is executing alone on a dedicated system. A key purpose

of such protocols is to ensure the atomicity and isolation properties of the DBMSs.

Existing concurrency control protocols can be generally classified into three

categories: timestamp ordering, optimistic concurrency control, and two-phase

locking. These three classes of protocols differ from each other in the ways of

coordinating the reads and writes from concurrent transactions. For example,

both timestamp ordering and two-phase locking require the DBMS to maintain

certain forms of meta-data for all the targeted tuples in order to resolve potential

data conflicts during the tuple-accessing time; however, optimistic concurrency

control validates the consistency of all the accessed tuples only after the commit

phase of a transaction. The effectiveness of these coordination schemes can

severely influence the concurrency levels of transaction processing. In addition to

the coordination schemes, another factor that can affect the system performance

is the maintenance of the DBMS’s internal data structures that are related to

the transaction execution. The conventional approach for implementing these

protocols in a disk-based DBMS is to maintain a separate lock table for recording

the lock status of each tuple in the database, and any transaction that accesses a

certain tuple in the database must acquire the corresponding lock maintained in the

lock table prior to the execution of read or write operations performed to the tuple.

Provided with large main memories, maintaining a separate lock table is no longer

the optimal strategy for implementing high-performance DBMSs, and directly

storing meta-data fields along with data tuple contents can significantly reduce the

performance penalty caused by high cache miss rates. Crafted with sophisticated

4

Chapter 1. Introduction

data structures, existing concurrency control protocols implemented in a main-

memory DBMS can achieve near-linear scalability under many types of modern

OLTP workloads. However, when confronting contended workloads where most

transactions read or write only a very small portion of data, all these schemes can

suffer from significant performance degradation. This is because under the existing

concurrency control protocols, a transaction has to be aborted when confronting

data conflicts, and frequently restarting aborted transactions can waste most of

the computing resources that have been put into running the transaction. Such

performance penalty is exacerbated if the accessed tuples are highly contended,

forcing a transaction to repeatedly abort and restart. The observations described

above altogether indicate that a major challenge for designing concurrency control

protocols is to sustain high scalability even under highly contended workloads.

• Logging and Recovery. A logging and recovery scheme provides a DBMS

with durability property, which ensures that a DBMS can restore all its lost

states even after the occurrence of unexpected system failures caused by machine

crashes, power outage, or any other reasons. The existing logging and recovery

schemes are generally designed for conventional DBMSs which store the entire

database states in the underlying hard disks and treat the main memory as a

state caching for performance optimization. To ensure the durability property, a

disk-based DBMS employs conventional write-ahead logging scheme to persist

logs before applying any modifications to the database state. However, such

logging mechanism is not optimized for modern main-memory DBMSs. Similar

to the conventional disk-based DBMS, a main-memory DBMS has to continuously

persist all its generated data logs into secondary storages before returning the

transaction results to the users. However, a main-memory DBMS can delay the

persistence of these log records until the commit phase of a transaction. This is

because such kind of DBMSs maintain all the states in memory, and dirty data is

never dumped into secondary storage. This observation makes it possible to record

only after images of all the modified tuples for a main-memory DBMS, which

significantly reduces the log file sizes. However, recording any modified tuples

5

Chapter 1. Introduction

into the underlying secondary storage is still too expensive for main-memory

DBMSs, as this mechanism requires frequent disk accesses, which can soon

become the major bottleneck of the system. Confronting this problem, command

logging mechanism is proposed in recent years to specifically optimize the logging

performance for in-memory transaction processing. While greatly reducing the

overhead for system runtime, a well-known limitation for command logging is

that the recovery time can be significantly increased compared to conventional

tuple-based logging schemes. This is because command logging only dumps the

transaction logic into secondary storage, and such information cannot be easily

exploited for parallelization. The discussions presented above indicate that a major

challenge in the design of modern main-memory DBMS is how to achieve high

performance for both transaction processing and failure recovery.

• Multi-Version Transaction Management. Most of the modern DBMSs adopt

multi-version concurrency control (MVCC) schemes to support time-travel queries

and to achieve higher levels of concurrency. The basic idea of MVCC is that the

DBMS maintains multiple physical versions of each logical object in the database

to allow operations on the same object to proceed in parallel. This requires the

DBMS to always construct a new physical version of a tuple when a transaction

updates the same tuple. A challenging issue behind MVCC is the transaction

management, which requires a DBMS to effectively organize the internal data

structures as well as the database states even under frequent updates of concurrent

transactions. This requirement essentially calls for a careful planning on how the

system stores multiple versions for each tuple and what information each version

must contain. In the conventional disk-based DBMSs, tuple versions are entirely

persisted in the secondary storage, and increasing the data access frequency can

greatly reduce the DBMS performance due to the expensive overhead of disk

seeking. However, in the modern main-memory DBMSs where the database states

are mainly held in the main memories, the performance characteristics of different

data structure management schemes can become unpredictable. This is because

frequent single-point data access is no longer the dominant factor that impact

6

Chapter 1. Introduction

the performance, thanks to the data caching scheme provided in modern com-

puter architectures. Moreover, the introduction of multi-core architecture further

complicates the performance modeling of such DBMSs because of the cache-

coherence protocols. Furthermore, several design decisions including concurrency

control protocol, version storage, garbage collection, and index management will

altogether affect the system performance. As transaction management schemes

can directly impact the performance of these DBMS components, system devel-

opers must carefully select a suitable transaction management scheme prior to

developing any complex functionalities. The complexity of the system design

indicates that we should conduct a comprehensive study to better understand the

performance characteristics of the transaction management schemes in modern

main-memory multi-version DBMSs.

The discussions on the different aspects discussed above illustrate the challenges we

may confront in building a high performance DBMSs that can effectively support

modern OLTP workloads. In fact, these aspects are tightly coupled with each other,

and the redesign of a single component can directly affect the effectiveness of others.

Witnessing these problems, in this thesis, we study the problem of building scalable

multi-core main-memory DBMSs from a systematic perspective. Unlike existing works

that purely study the optimization of a single component of DBMSs, our proposal instead

investigates any potential performance bottlenecks across the full stack of the DBMSs. In

particular, we discuss the design and implementation of two core components, including

concurrency control protocols and logging and recovery, and after that, we perform

a detailed empirical evaluation on transaction management in modern main-memory

multi-version DBMSs. Throughout this thesis, We conduct comprehensive performance

study and propose novel mechanisms to address the issues identified above. In addition,

we also point out some future works in designing and implementing next-generation

multi-core main-memory DBMSs.

The contributions in this thesis are listed as follows:

• Transaction Healing: A Robust Concurrency Control Protocol on Multi-

7

Chapter 1. Introduction

Cores. We present a new concurrency control protocol, called transaction healing,

that exploits program semantics to scale the conventional optimistic concurrency

control (OCC) protocol towards dozens of cores even under highly contended

workloads. Transaction healing captures the dependencies across operations within

a transaction prior to its execution. Instead of blindly rejecting a transaction once

its validation fails, the proposed mechanism restores any non-serializable opera-

tion and heals inconsistent transaction states as well as query results according to

the extracted dependencies. Our experiments confirm that transaction healing can

scale near-linearly, yielding significantly higher transaction throughput than the

state-of-the-art concurrency control schemes.

• PACMAN: A Parallel Logging and Recovery Mechanism on Multi-Cores. We

present PACMAN, a parallel logging and recovery mechanism that achieves high

performance in both transaction processing and failure recovery. PACMAN adopts

conventional command logging mechanism for recording transaction logs and

leverages a combination of static and dynamic analyses to parallelize command log

recovery: at compile time, PACMAN decomposes stored procedures by carefully

analyzing dependencies within and across programs; at recovery time, PACMAN

exploits the availability of the runtime parameter values to attain an execution

schedule with a high degree of parallelism. Our experiments show that PAC-

MAN significantly reduce recovery time without compromising the efficiency of

transaction processing.

• Multi-Version Transaction Management: An Evaluation on Multi-Cores. We

present a comprehensive experiment study to measure the performance implica-

tions of transaction management schemes in modern multi-core main-memory

DBMSs. We conduct an extensive study of a multi-version DBMS’s four key de-

sign decisions: concurrency control protocol, version storage, garbage collection,

and index management. We implemented state-of-the-art variants of all of these in

an in-memory DBMS and evaluated them using various types of OLTP workloads.

Our analysis identifies the fundamental bottlenecks of each design choice.

8

Chapter 1. Introduction

All of our contributions shown in this thesis are implemented in two different DBMSs:

Cavalia [cav], a main-memory DBMS prototype specifically optimized for multi-core

settings, and Peloton [pel], a fully fledged multi-core main-memory DBMS designed for

high performance transaction processing. The comprehensive performance evaluation

on both DBMSs indicate the effectiveness of our proposed mechanisms.

The outline of this thesis is listed as follows. We begin in Chapter 2 with a comprehensive

literature review of the state-of-the-art mechanisms in the design and implementation of

main-memory DBMSs. In Chapter 3, we then provide a detailed discussion of transaction

healing, our proposed concurrency control protocol that achieves scalable and robust

transaction processing on multi-core architectures. In Chapter 4, we present PACMAN,

the new logging and recovery scheme we proposed for achieving high performance

in both transaction processing and failure recovery. We next discuss in Chapter 5 the

evaluation of transaction management schemes on multi-core main-memory DBMSs

and point out potential bottlenecks of the existing mechanisms. In Chapter 6, we provide

some hints in resigning the DBMS architectures for supporting the emerging hybrid

transactional and analytical processing (HTAP) workloads. We conclude this thesis in

Chapter 7.

9

CHAPTER 2
Literature Review

The design and implementation of transactional DBMSs has been widely investigated

by both the research and the industry communities during the last several decades.

Observing the extensive corpus on the problems on optimizing the performance of

transactional DBMSs, in this chapter, we provide a comprehensive literature review on

transaction processing in modern DBMSs. We first survey the DBMS architectures that

are developed for fast transaction processing on modern hardware. Then we review the

related works on the topics of concurrency control protocols, logging and recovery, and

multi-version transaction management.

2.1 DBMS Architectures on Modern hardware

The fist-generation of DBMSs were built to execute transactions on a machine that was

equipped with only a single CPU core and small main memories. Due to the hardware

limitation, this kind of DBMSs has to maintain database states in secondary storage,

and main memory was used as a cache for optimizing data access speed. With the

advancements in hardware technologies, modern DBMSs can now leverage large main

memories and parallel processors to improve transaction processing performance. In this

section, we review the history of main-memory and multi-core DBMSs.

The history of building multi-core main-memory DBMSs can be dated back to 1984, in

which year DeWitt et al. [DKO+84] discussed implementation techniques for building

DBMSs. While limited by the condition of hardware techniques, researchers at that time

11

Chapter 2. Literature Review

still proposed several mechanisms for improving the transaction processing performance

and reducing the memory usage. For example, Lehman et al. [LC86a] studied the index

structures for main-memory DBMSs, and after that, the same authors also investigated

query processing [LC86b] as well as failure recovery [LC87] in this type of DBMS. In

the 1990s, many more works on main-memory DBMSs have been released. Among

these works, the system Dali [JLR+94] is considered as a pioneering DBMS that is

optimized for transaction processing. The follow-up work called DataBlitz [BBG+98]

also became an influential commercialized main-memory DBMS at that time. Although

the works proposed decades ago settled the foundation for the design of high perfor-

mance main-memory DBMSs, these ideas were not widely applied to the industrial-level

systems due to the constraints of the hardware’s computing powers. However, thanks

to the advancements in the hardware technologies, the idea of main-memory DBMSs

again attracted lots of attentions from both the research and the industry communities.

A remarkable work is called H-Store [KKN+08], which is a distributed main-memory

DBMS that is fully redesigned to optimize transactions in modern hardware. Different

from previous works, H-Store directly leverage partition-level locks to synchronize the

execution of different worker threads. The success of H-Store’s transaction execution

model is based on the assumption that most transactions can finish execution without

accessing data from multiple partitions. This assumption also requires the DBMS to

adopt different partitioning schemes [CJZM10, PCZ12] to reduce cross-partition trans-

action ratio. To better utilize main memories, H-Store further proposed anti-caching

scheme [DPT+13] to reduce the overhead caused by OS paging. With the prevalence

of community machines containing multiple CPUs and dozens of physical cores, re-

searchers further attempt to exploit multi-programming technique to fully utilize the

computing power of multi-core architectures. A leading project is Silo [TZK+13], which

is developed to leverage optimistic concurrency control to achieve scalable transaction

processing on multi-core machines. Commercial systems including Hekaton [DFI+13],

VoltDB [vol], and MemSQL [mem] absorbed ideas proposed in recent years to achieve

efficient support for real-world OLTP application.

12

Chapter 2. Literature Review

2.2 Concurrency Control Protocol

Concurrency control protocols have been carefully investigated in the last several decades,

and it is regarded as the key aspect for optimizing the concurrency level of transaction

processing. Before the emergence of main-memory DBMSs, researchers in the database

community focused their attentions in improving the protocols for disk-based DBMSs.

But in recent years, most of the research efforts are put into the design of scalable

protocols in the main-memory settings. In this section, we first review the proposals of

various of main-memory concurrency control protocols. Then we study the family of

optimistic concurrency control protocols, which is widely used in modern main-memory

DBMSs. After that, we show how existing works optimize the transaction processing

performance by exploiting program analysis. Finally, we survey related works on the

area of transactional memory.

2.2.1 Main-Memory Concurrency Control Protocol

Researches on the optimization of concurrency control protocols were first applied to

conventional disk-based DBMSs. To improve the transaction processing performance in

disk-based DBMSs, several works have been proposed to improve the effectiveness of

concurrency control protocols. The ideas behind these works [Hor13, JPH+09, JHF+13]

were generally about removing centralized locking bottlenecks embedded in different

DBMS components, such as lock tables. Some other works [PJHA10, PTJA11] were

designed to reduce the lock-hold duration time by leveraging the database partitioning

schemes. While these optimization schemes were originally proposed for disk-based

DBMSs, they can also be applied for modern main-memory DBMSs. Beyond these

ideas, researchers have proposed several concurrency control protocols that were specif-

ically designed for in-memory transaction processing. Ren et al. [RTA12] removed

contention bottlenecks in centralized lock manager by proposing a lightweight per-tuple

2PL scheme. Larson et al. [LBD+11] recently revisited two multi-version concurrency

control (MVCC) protocols, and their study further settled the foundation for Microsoft’s

Hekaton DBMS [DFI+13]. Faleiro et al. [FTA14] proposed a technique for lazily evalu-

13

Chapter 2. Literature Review

ating transactions, and this technique improves database performance for certain kinds

of workloads. Based on a similar design principle, the same authors improved the

MVCC performance by decoupling concurrency control protocol and version manage-

ment from transaction execution [FA15]. Levandoski et al. [LLS+15] presented an

efficient range concurrency control scheme that extends multi-version timestamp order-

ing to support range resources and fully supports phantom prevention. As a departure

from the traditional database architectures, several deterministic DBMSs, including

H-Store [KKN+08], Hyper [KN11], and Calvin [TA10, TDW+12], have been proposed.

These DBMSs divide the underlying storage into multiple partitions, each of which is

protected by a lock and is assigned a single-threaded execution engine with exclusive ac-

cess. To optimize system performance, different partitioning schemes [CJZM10, PCZ12]

were proposed to reduce the number of cross-partition transactions.

2.2.2 Optimistic Concurrency Control

Optimistic concurrency control (OCC) was first proposed by Kung and Robinson [KR81].

Witnessing its vulnerability to contended workloads, several works have been introduced

to reduce OCC’s abort rate. Agrawal et al. [ABGS87] adopted a multi-versioned protocol

to allow inconsistent access to the database tuples. Herlihy [Her90] eliminated successive

abort-and-restart in OCC by resorting to pure lock-based protocol once transaction abort

occurs. In recent years, OCC have been widely adopted in main-memory DMBSs. As

a representative system that leverages OCC for transaction processing, Silo [TZK+13]

achieves high transaction throughput by avoiding anti-dependency tracking and taking

advantage of a main-memory index [MKM12]. Hekaton [DFI+13] facilitates the OCC’s

performance by exploiting multi-versioning to avoid installing writes until commit

time. Hyder [BRD11] adopts a variant of OCC protocol called meld [BRWY11] that

is specifically designed for log-structured DBMSs. Some other recent works focus on

optimizing OCC in distributed environments and new system architecture. For example,

Bernstein et al. [BD15, BDDP15] improved OCC’s performance in distributed log-

structured databases without storage partitioning. Ding et al. [DKDG15] introduced a

14

Chapter 2. Literature Review

new elastic distributed transaction processing mechanism that separates the validation

layer from storage layer. Wang et al. [WQLC14] leveraged restricted transactional

memory to optimize the OCC performance.

2.2.3 Program Analysis

Many works have been proposed to adopt program partitioning and transformation

to optimize system performance [BGL99, CMAM12, CMSL14a, CMSL+14b, GM83,

GMS87, RGS12]. Among them, one widely adopted technique is transaction chop-

ping [SLSV95], which analyzes possible transaction conflicts using SC-cycles. In

fact, the database community has investigated various types of transaction partitioning

mechanisms for improved system performance [BGL99, GM83, GMS87]. Transaction

chopping is also applied to several modern database applications. Zhang et al. [ZPZ+13]

proposed transaction chain to achieve serializability in geo-distributed databases, and

Mu et al. [MCZ+14] tracked dependencies between concurrent transactions to optimize

distributed transactions in high contention scenario. Several other works also resorted

to program analysis for improved performance. Doppel [NCKM14] splits transaction

execution into two phases, and processes commutative operations in parallel for higher

transaction throughput.

2.2.4 Transactional Memory

Transaction memory is well studied in recent years [HLR10, HMPJH05]. Sonmez et

al. [SHC+09] proposed a mechanism that allows software transactional memory (STM)

to dynamically select the best scheme for individual variables. Xiang et al. [XS15b]

observed a high abort rate of hardware transactional memory (HTM) and presented a

consistency-oblivious (i.e., OCC-like) solution [AAS11, AK14] for reducing the HTM

abort rate caused by capacity overflow, Their following work [XS15a] further mitigated

the conflict-caused abort problem using advisory lock. Blundell et al. [BRM10] adopted

symbolic tracking to commit transactions in the case of data conflicts by re-executing read

instructions in the programs. However, their approach is restricted to only “non-critical

15

Chapter 2. Literature Review

conflicts" occurring on auxiliary or bookkeeping data. Litz et al. [LCF+14] resorted to

snapshot isolation for reduced abort rate, but their approach inevitably sacrifices program

consistency. Ramadan et al. [RRW08] proposed conflict serializability to reduce aborts

by relaxing concurrency control. While their approach reduces abort rates in certain

cases, it is not general enough to provide full capability of tolerating all the read-write

conflicts. Several recent works have exploited hardware transactional memory (HTM) to

improve the performance of OLTP databases. Yoo et al. [YHLR13] utilized Intel’s TSX

to build efficient indexes, and Makreshanski et al. [MLS15] further studied the interplay

of HTM and lock-free indexing methods. Wang et al. [WQCL13] also employed HTM

to build a concurrent skiplist. These studies on concurrent database indexes revealed that

high abort rate due to capacity overflow and data contention can severely restrict HTM’s

performance. To deal with the high abort rate caused by HTM’s capacity overflow,

Leis et al. [LKN14] and Wang et al. [WQLC14] respectively modified the timestamp

ordering and OCC protocols to fully explore HTM’s benefits in atomic execution. While

achieving satisfactory performance when processing low-contention workloads, neither

of them is able to sustain high transaction rate if the workload is contended. Wei et

al. [WSC+15] and Chen et al. [CWS+16] exploited HTM and RDMA to build speedy

distributed OLTP databases.

2.3 Logging and Recovery

Transaction processing in main-memory DBMSs have been well studied by the research

community for last several decades. However, the durability problem in such DBMSs

has been long criticized, since the existing logging and recovery mechanisms can bring

significant performance overhead to either transaction processing or failure recovery. To

fully understand the difficulties of the durability problem, in this section, we survey the

checkpointing and logging mechanisms proposed in modern DBMSs.

16

Chapter 2. Literature Review

2.3.1 Checkpointing

Among the research studies of checkpointing algorithms, Cao et al. [CVSS+11] proposed

two snapshotting approaches, called Wait-Free ZigZag and Wait-Free Ping-Pong, for fast

persistence of long-running applications. Liedes et al. [LW06] introduced a consistency-

preserving and memory-efficient checkpointing based on software-level tuple-shadowing

technique. Kemper et al. [KN11], in contrast, adopted hardware-assisted copy-on-write

mechanism to achieve fast database checkpointing. Ren et al. [RDAT16] presented a

new asynchronous checkpointing mechanism for single-version DBMSs. While these

approaches have greatly reduced the checkpoint overhead, our studies, as well as several

previous works [MWMS14b, ZTKL14a], have shown that log recovery is the major

bottleneck of the entire database state recovery phase.

2.3.2 Logging

The gold standard for logging in disk-based logging is widely considered to be write-head

logging, a.k.a. ARIES-style logging [MHL+92], which persists transaction updates into

secondary storage before commitment. Several optimizations, such as log compression,

have been investigated for this logging mechanism [DKO+84, LE93]. While disk-

based DBMS leverages write-ahead logging to persist logs before the modification is

applied to the database state, main-memory DBMSs can delay the persistence of these

log records until the commit phase of a transaction [DFI+13, ZTKL14a]. Command

logging [MWMS14b] is a new technique that is specifically designed for main-memory

DBMSs. This kind of coarse-grained logging can significantly reduce the runtime

performance overhead to transaction processing [LTZ11].

2.3.3 Recovery

Logging-and-recovery techniques face a performance trade-off between transaction

processing and failure recovery. While tuple-level logging [MHL+92] offers faster

recovery, transaction-level logging [LTZ11, MWMS14b] incurs minimal overhead at

17

Chapter 2. Literature Review

runtime. Existing works that attempt to improve the failure recovery performance

largely focus on optimizing tuple-level logging mechanisms by leveraging log com-

pression [DKO+84, LE93] and hardware support [JPS+10, ORS+11, WJ14, ZTKL14a].

Yao et al. [YAC+16] investigated the recovery costs between transaction-level logging

and tuple-level logging in distributed in-memory DBMSs.

2.4 Multi-Version Transaction Management

Most of the modern DBMSs implement multi-version concurrency control (MVCC)

to achieve higher levels of concurrency. A challenging problem behind MVCC is the

design of transaction management in the DBMS. There are four aspects in the DBMS

that can be affected by transaction management, namely, concurrency control protocol,

version storage, garbage collection, and index management. This section surveys the

related works proposed to optimize these four aspects.

2.4.1 Concurrency Control Protocol

Modern DBMSs adopt multi-version concurrency control protocols to improve the sys-

tem performance. The first mention of multi-version concurrency control (MVCC)

protocol appeared in Reed’s 1979 dissertation [Ree78]. After that, researchers focused

on understanding the theory and performance of MVCC in single-core disk-based

DBMSs [BG81, BHG87, CM86]. Larson et al. [LBD+11] compared pessimistic and

optimistic protocols in an early version of the Microsoft Hekaton DBMS [DFI+13].

Lomet et al. [LFWW12] proposed a scheme that uses ranges of timestamps for resolving

conflicts among transactions, and Faleiro et al. [FA14] decoupled multi-version DBMS’s

concurrency control protocol and version management from the DBMS’s transaction exe-

cution. Given the challenges in guaranteeing multi-version DBMSs’ serializability, many

DBMSs instead support a weaker isolation level called snapshot isolation [BBG+95]

that does not preclude the write-skew anomaly. Serializable snapshot isolation (SSI)

ensures serializability by eliminating the write-skew anomaly that can happen in snapshot

18

Chapter 2. Literature Review

isolation [CRF09, FLO+05, ROO11]. Kim et al. [KWRP16] used a variant of SSI to

scale multi-version DBMSs on heterogeneous workloads.

2.4.2 Version Storage

One of the important design choices in multi-version DBMSs is the version storage

scheme. Herman et al. [HZN+10] proposed a differential structure for version man-

agement to achieve high write throughput without compromising the read performance.

Neumann et al. [NMK15] improved the performance of multi-version DBMSs with the

transaction-local storage optimization to reduce the synchronization cost. These schemes

differ from the conventional append-only version storage scheme that suffers from higher

memory allocation overhead in main-memory DBMSs. Arulraj et al. [APM16] examined

the impact of physical design on the performance of a hybrid DBMS while running

heterogeneous workloads.

2.4.3 Garbage Collection

Most DBMSs adopt a tuple-level background vacuuming garbage collection scheme. Lee

et al. [LSP+16] evaluated a set of different garbage collection schemes used in modern

DBMSs. They proposed a new hybrid scheme for shrinking the memory footprint in

SAP HANA. Silo’s epoch-based memory management approach allows a DBMS to scale

to larger core counts [TZK+13]. This approach reclaims versions only after an epoch

(and preceding epochs) no longer contain an active transaction.

2.4.4 Index Management

Recently, new index data structures have been proposed to support scalable main-memory

DBMSs. Lomet et al. [LSL13] introduced a latch-free, order preserving index, called

the Bw-Tree, which is currently used in several Microsoft products. Leis et al. [LKN13]

and Mao et al. [MKM12] respectively proposed ART and Masstree, which are scalable

index structures based on tries.

19

CHAPTER 3
Transaction Healing: A Robust Concurrency

Control Protocol on Multi-Cores

3.1 Introduction

Concurrency control protocol is the key factor that determines the scalability of main-

memory database management systems (DBMSs). While several protocols have been

developed to serialize transactions in DBMSs, optimistic concurrency control (OCC) is

gaining popularity in the development of modern main-memory DBMSs that target at

supporting on-line transaction processing (OLTP) workloads on modern multi-core ma-

chines [DFI+13, LBD+11, NCKM14, TZK+13]. By clearly detaching the computation

of a transaction from its commitment, OCC greatly shortens its lock-holding duration

and therefore yields very high transaction throughput when processing low-contention

workloads.

Unfortunately, such performance benefits diminish for workloads with significant data

contention, where multiple concurrent transactions access the same tuple with at least

one transaction modifying the tuple. A transaction using OCC protocol has to validate the

consistency of its read set before commitment in order to ensure that no other committed

concurrent transaction has modified any tuple that is read by the current transaction. If

a transaction fails the validation, the transaction has to be aborted and restarted from

scratch. Moreover, any partial work done prior to the abort will be discarded, wasting

the resources that have been put into running the transaction. Such performance penalty

can be exacerbated if the accessed tuples are highly contended, forcing a transaction to

21

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

repeatedly abort and restart.

In this chapter, we present transaction healing, a new concurrency control protocol

that scales the conventional OCC towards dozens of cores even under highly contended

workloads. The key observation that inspires our proposal is the fact that most OLTP

applications contend on a few hot tuples [LLS13], and the majority of transactions

failing OCC’s validation phase is due to the inconsistency of a very small portion of its

read set. By exploiting program semantics of the transactions, expensive transaction

aborts-and-restarts can be prevented by restoring only those non-serializable operations,

whose side effects, i.e., the value returned by a read operation or the update performed by

a write operation, are (indirectly) affected by a certain inconsistent read. Subsequently,

inconsistent transaction states as well as query results can be healed without resorting to

the expensive abort-and-restart mechanism. This approach significantly improves the

resource-utilization rate in transaction processing, yielding superior performance for any

type of workloads.

A key design decision in transaction healing is to maintain a thread-local structure, called

access cache, to track the runtime behavior of each operation within a transaction. This

structure facilitates the operation restoration in transaction healing from two aspects.

First, the recorded side effects of each operation can be re-utilized to shorten the critical

path for healing transaction inconsistencies; second, the cached memory addresses of

the accessed tuples can be leveraged to eliminate any unnecessary index lookups for

accessing targeted tuples. In particular, the maintenance of this data structure is very

lightweight, which is confirmed by our experimental studies.

Transaction healing can partially update the membership of read/write sets when pro-

cessing dependent transactions 1. Observing the high expense brought by such update,

transaction healing avoids unnecessary overhead by carefully analyzing the false in-

validation. While membership update can result in transaction abort due to deadlock

prevention, our proposed schema-based optimization mechanism leverages the access

1A dependent transaction is a transaction where its read/write set cannot be determined from a static
analysis of the transaction [TA10].

22

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

patterns within the database applications to greatly reduce the likelihood of deadlock

occurrences.

Different from the state-of-the-art OCC optimization techniques that address scalability

bottlenecks caused by redundant serial-execution points [DFI+13, LBD+11, TZK+13],

the emphasis of transaction healing is to reduce the high cost of aborts-and-restarts from

data contentions. This essentially renders OCC effective for a wider spectrum of OLTP

workloads. The design of transaction healing is also a departure from existing hybrid

OCC schemes [Her90, Tho98, YD92]. Instead of executing restarted transactions with

lock-based protocols, transaction healing attempts to re-utilize the execution results

without restarting the invalidated transactions from scratch.

We implemented transaction healing in Cavalia, a main-memory DBMS prototype built

from the ground up. Results of an extensive experimental study on two popular bench-

marks, TPC-C and Smallbank, confirmed transaction healing’s remarkable performance

especially under highly contended workloads.

This chapter is organized as follows: Section 3.2 demonstrates transaction healing

through a running example. Section 3.3 introduces the static analysis mechanism and

Section 3.4 describes the runtime execution of transaction healing. We report extensive

experiment results in Section 3.5. Section 3.6 summarizes this work.

3.2 Transaction Healing Overview

Transaction healing aims at scaling the conventional optimistic concurrency control

(OCC) towards dozens of cores even under highly contended workloads. Inheriting

the success of the state-of-the-art OCC protocols [DFI+13, LBD+11, TZK+13] in

eliminating redundant serial-execution points, transaction healing further strengthens

OCC’s capability in tackling data conflicts by exploiting program semantics.

23

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

3.2.1 Optimistic Concurrency Control

The conventional OCC proposed by Kung and Robinson [KR81] splits the execution

of a transaction into three phases: (1) a read phase, which tracks the transaction’s

read/write set using a thread-local data structure; (2) a validation phase, which certifies

the consistency of its read set; and (3) a write phase, which installs all its updates

atomically. While the detachment between computation and commitment shortens the

lock-holding time during execution, the absence of lock protection in the read phase can

compromise the consistency of an uncommitted transaction if certain tuple in its read set

is modified by any committed concurrent transaction. Conventional OCC tackles such

problem with a straightforward abort-and-restart strategy once inconsistency is detected.

We illustrate the mechanism with a running example depicted in Figure 3.1a 2.

1. PROCEDURE Transfer(srcId){

2. dstId<-read(Client, srcId)

3. srcVal<-read(Balance, srcId)

4. dstVal<-read(Balance, dstId)

5. tmp<-0.01*srcVal

6. write(Balance, srcId, srcVal-tmp)

7. write(Balance, dstId, dstVal+tmp)

8. bonus<-read(Bonus, srcId)

9. write(Bonus, srcId, bonus+1)

10. }

Table: Balance

Amy 2,000

Dan 1,200

Table: Bonus

Amy 18

Table: Client

Amy Dan

(a) Stored procedure. (b) Initial database state.

Figure 3.1: Bank-transfer example.

Given the initial database state shown in Figure 3.1b, a transaction T1 issued with

argument Amy first assigns dstId with the value Dan (Line 2) and then transfers

$20 to Dan’s Balance account (Lines 3-7). Finally, $1 is returned back to Amy’s

Bonus account (Lines 8-9). During the validation phase, T1 will be determined as

inconsistent if a concurrent transaction T2 gets committed with Amy’s balance modified

from $2,000 to, say, $2,500. In this scenario, abort-and-restart mechanism is applied to

ensure a serializable execution of T1. Unfortunately, such a scheme can severely degrade

2For simplicity, we respectively abstract the read and write operations in a stored procedure as
var←read(Tab, key) and write(Tab, key, val). Both operations search tuples in table
Tab using the accessing key called key. The read operation assigns the retrieved value to a local variable
var, while the write operation updates the corresponding value to val.

24

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

the system performance if a certain tuple is intensively updated, causing invalidated

transactions to be repeatedly restarted from scratch.

3.2.2 Transaction Healing

Confronting the pros and cons of conventional OCC, transaction healing leverages pro-

gram semantics to remedy OCC’s weakness in addressing data conflicts. This is achieved

with the help of static analysis at compile time that extracts operation dependencies

hidden within the stored procedures.

Figure 3.2 compares the runtime execution of transaction healing with that of conven-

tional OCC. Instead of directly rejecting an invalidated transaction, transaction healing

resorts to an additional healing phase to handle any detected inconsistency by restoring

the transaction’s non-serializable operations. Given an invalidated transaction T , a

read/write operation o in T is defined to be a non-serializable operation if the outcome

of o would be different when T is re-executed. The healing phase aims to re-utilize as

many of an invalidated transaction’s execution results as possible to heal its inconsistent

transaction state as well as its query results according to the extracted dependencies. The

forward progress of any in-flight transaction is guaranteed by the design principle of

transaction healing, as will be elaborated further in the following sections.

OCC

Transaction

healing

Read Validation Healing AbortWrite

Figure 3.2: A comparison between OCC and transaction healing.

As an illustration, we discuss how transaction healing addresses the data conflicts

exhibited in the running example with minimal execution overhead. Transaction healing

maintains a thread-local access cache to track the behavior of every operation that is

executed by T1. On detecting the modification of Amy’s balance during the validation

phase of T1, the operations in Line 3 and Lines 6-7 (see Figure 3.1a) are determined

25

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

to be non-serializable. This is because the operation in Line 3 assigns Amy’s balance

to srcVal, which is subsequently used in Lines 6-7. Transaction healing therefore

directly corrects the side effects made by these three operations without restarting the

whole transaction. This strategy can work, as the maintained access cache records the

runtime behavior of every operation in the transaction, and the results generated by

those serializable operations can still be reused. Meanwhile, the invoked operation

restoration does not trigger any expensive index lookups, since all the tuples that are

read or written by the corresponding operation are logged in the access cache. Hence,

the system overhead is greatly reduced.

3.2.3 Transaction Healing Overview

We implemented transaction healing in a main-memory DBMS prototype called Cavalia,

which is specifically designed for modern multi-core architecture. Cavalia is designed

to optimize the execution of transactions that are issued from stored procedures and

it provides full support for ad-hoc queries. Cavalia maintains locks with a per-tuple

strategy. For each tuple in the database, Cavalia maintains the following three meta-data

fields: (1) a timestamp field indicating the commit timestamp of the last transaction

that writes the tuple; (2) a visibility flag indicating whether the tuple is visible to other

transactions3; and (3) a lock flag indicating the lock status of the tuple. As we shall

see, these additional fields enable an efficient implementation of the healing phase in

transaction healing.

In the following sections, we formalize the mechanism of transaction healing and show

how this proposed technique improves the performance of Cavalia without bringing

costly runtime overhead.

3The visibility flag for a tuple R is set to 0 iff R has been deleted by a committed transaction or R is
newly inserted by a yet-to-be-committed transaction.

26

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

3.3 Static Analysis

Transaction healing performs static analysis [AS92] to extract operation dependencies

from each predefined stored procedure prior to transaction processing. The goal is

to help identify the inconsistent transaction states as well as the query results for any

uncommitted transaction that fails its validation, which is elaborated in Section 3.4.

Transaction healing classifies the dependencies among program operations into two

categories: key dependencies and value dependencies. A key dependency captures the

relation between two operations where the preceding operation directly determines the

accessing key of the subsequent operation. A value dependency captures the relation

between two operations where the generated output of the preceding operation determines

the non-key value to be used in the subsequent operation. The dependencies in a program

are extracted using a static analysis process and they are represented by a graph referred

to as a program dependency graph. Figure 3.3 shows such a graph for the bank-transfer

example listed in Figure 3.1a. We say that the operations in Lines 4 and 7 are key-

dependent on the preceding operation in Line 2, because Line 2 generates dstId that

is further used as accessing key in Lines 4 and 7. Operations in Lines 8 and 9, in

contrast, depict a value-dependency relation, since the preceding read operation defines

the variable bonus that is later used as update value in the subsequent write operation.

srcVal<-read(Balance, srcId)

dstVal<-read(Balance, dstId)tmp<-0.01*srcVal

write(Balance, srcId, srcVal-tmp) write(Balance, dstId, dstVal+tmp)

bonus<-read(Bonus, srcId)

write(Bonus, srcId, bonus+1)

dstId<-read(Client, srcId)
23

45

6 7

8

9

Figure 3.3: Program dependency graph. Solid lines represent key dependencies, while
dashed lines represent value dependencies.

Given a stored procedure’s program dependency graph, transaction healing can leverage

the extracted dependency information for healing the procedure’s transactions that fail to

27

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

pass the validation phase. The detailed mechanism is discussed in Section 3.4.

Transaction healing aborts any transaction that violates the integrities enforced by either

application logic (e.g., user-defined constraints) or database constraints (e.g., functional

dependencies). This is achieved by encoding additional dependencies for any enforced

integrities in the program dependency graph. The whole transaction will be aborted once

the restoration of any non-serializable operation results in the violation of integrities.

3.4 Runtime execution

This section describes the runtime execution of transaction healing, our proposed scheme

that supports scalable transaction processing in the main-memory and multi-core settings.

Transaction healing splits the execution of a transaction into three phases, including a read

phase, a validation phase, and a write phase. During the validation phase, an additional

healing phase is invoked to restore non-serializable operations once any inconsistent

read is detected. This is achieved by leveraging a combination of the statically extracted

dependency graph and the dynamically obtained execution information that is explicitly

monitored during the transaction’s execution.

In this section, we first explain transaction healing by modeling transactions using simple

read and write operations where tuples are accessed given their key values. Specifically,

we discuss in detail how transaction healing tracks runtime information during the read

phase of the transaction execution, and then show how the validation, healing, and

write phases are designed and optimized to facilitate transaction processing under highly

contended workloads. To show the generality of transaction healing, we then demonstrate

the support for generic database operations (e.g., inserts, deletes, and range queries) as

well as ad-hoc transactions.

3.4.1 Tracking Operation Behaviors

Similar with conventional OCC, transaction healing tracks the read/write set of a transac-

tion and buffers all the write effects during the read phase of its execution [BHG87]. In

28

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

particular, a read/write set is a thread-local data structure (i.e., a structure that is privately

updated by a single thread) where each element in the set is represented by the main-

memory address of some tuple accessed by the transaction. In addition, the following

meta-data is maintained for each accessed tuple in the transaction’s read/write set: (1)

a mode field indicating the access type (i.e., read (R), write (W), or read-write (RW))

to the tuple; (2) an R-timestamp field recording the value of the timestamp meta-data

of the tuple at the time it was read; and (3) a bookmark field uniquely identifying the

transaction’s operation that first reads the tuple; if the tuple is created by a blind-write op-

eration, its bookmark value is null. For simplicity, throughout the chapter, we represent

a bookmark value by the line number in the corresponding stored procedure.

In addition to the read/write set, transaction healing further maintains a lightweight

thread-local access cache to keep track of the runtime behavior of each operation.

Each operation invokes an index lookup to retrieve a certain number of tuples in the

database. By using the outputs of preceding operations or the input arguments to its

stored procedure, a read operation op returns certain values that will be either consumed

by the operations that are dependent on op or used as query results, while a write

operation yields update effects that will be buffered to the local copy of its accessed

tuple. In transaction healing, the access cache monitors inputs, outputs, as well as

update effects to capture each operation’s behavior. Each operation further maintains an

access set in the access cache to log the memory addresses of all the tuples it reads or

writes. The access cache facilitates the restoration of an operation as follows: on the one

hand, recording the runtime behavior for each operation helps re-utilize the execution

results yielded by those serializable operations; on the other hand, caching the memory

addresses of the accessed tuples eliminates the need for invoking an index lookup to

access a tuple as long as the accessing key of the operation remains the same.

Figure 3.4 shows the thread-local data structures maintained for transaction T1 that

is created in the bank-transfer example (see Section 3.2). The execution of the read

operation in Line 2 accesses a single tuple stored at address 0xAAAA and produces the

value Dan that will be used by subsequent operations dependent on this read operation.

Similarly, the write operation in Line 6 consumes two input arguments and updates the

29

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Address Mode R-Timestamp Bookmark

0xAAAA R 25 Line 2

0xBBBB RW 27 Line 3

0xCCCC RW 10 Line 4

0xDDDD RW 14 Line 8

Bookmark Inputs Effects Outputs Access set

Line 2 Amy - Dan 0xAAAA

Line 3 Amy - 2000 0xBBBB

Line 4 Dan - 1200 0xCCCC

Line 6 Amy, 1980 1980 - 0xBBBB

Line 7 Dan, 1220 1220 - 0xCCCC

Line 8 Amy - 18 0xDDDD

Line 9 Amy, 19 19 - 0xDDDD

ACCESS CACHE

READ/WRITE SET

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Figure 3.4: Thread-local data structures.

local copy of its corresponding tuple to $1,980. In this example, although each entry in

the access cache is associated with exactly one element in the read/write set, in general,

range queries in a transaction could retrieve multiple tuples and therefore each entry in

the access cache can map to multiple elements.

As we shall see shortly, with the runtime information maintained in these thread-local

data structures, transaction healing is able to restore any non-serializable operation

efficiently during the validation phase without resorting to abort-and-restart mechanism

that can lead to extremely low resource-utilization rate.

3.4.2 Restoring Non-Serializable Operations

Validation Phase

The read phase in the transaction execution is performed in a consistency-oblivious

manner. That is, any committed concurrent transaction can modify the global copy of a

tuple in the database without notifying any concurrent transaction that has a local copy

of the same tuple in its read/write set. Thus, transaction healing, similar to conventional

OCC, resorts to a validation phase to check the consistency of every tuple that is read by

a transaction before committing that transaction. We briefly depict transaction healing’s

validation phase in Algorithm 1.

In the validation phase for a transaction T , the tuple corresponding to each element in

30

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Algorithm 1 Validation phase in transaction healing.
Data: Read/write set S of the current transaction.

Validation Phase:
foreach r in sorted(S) do

Lock tuple located at r.address;
if r is accessed by any read operation then

if Validation of r fails then
Invoke healing phase for r;

T ’s read/write set will be locked and the locks are only released after the commit or abort

of T . Locking of tuples during the validation, healing, and write phases is necessary as

multiple transactions could be concurrently validated and committed. Since the tuples

accessed by a transaction are known from its read/write set, deadlocks due to locking is

avoided in transaction healing by ordering the lock acquisitions following a global order

that is applied to all transactions. In our implementation, the global order is based on an

ascending order of the memory addresses of the tuples [TZK+13].

For each element r in the read/write set S, the validation phase first locks the tuple R

corresponding to r by turning on its lock bit. If R was retrieved by a read operation,

the consistency of r is then validated by comparing the timestamps of R and r. A read

inconsistency is detected if these timestamps are not equal, implying that a committed

concurrent transaction has updated the same tuple. In this case, conventional OCC

would abort and restart the entire transaction from scratch, wasting resources that have

been put into running the transaction. Our proposed protocol, in contrast, detects and

restores non-serializable operations by leveraging the data structures maintained in the

thread-local workspace. This is achieved with the assistance of the healing phase.

Healing Phase

Algorithm 2 shows how the healing phase works. On detecting an inconsistent element

r that is read by an operation op in the transaction, the healing phase first corrects

the outputs for op, which is the initial non-serializable operation whose side effect is

31

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Algorithm 2 Healing inconsistent access during validation.
Data: Inconsistent element r, read/write set S , access cache C, and program dependency
graph G of the current transaction.

Healing Phase:
Retrieve operation op = r.bookmark;
Restore op;
Retrieve child operation list O for op w.r.t. G;
Initialize FIFO healing queueH = O;
whileH 6= ∅ do

heal_op = PopFront(H);
if heal_op is key-dependent on its parent operation then

Update heal_op’s access setM through re-execution;
foreach m inM do

if m.address < r.address then
if Attempting to lock m fails then

Abort();

Insert m into S and update C;

else
Restore heal_op;

Retrieve child operation list P for heal_op;
foreach p in P do

Insert p intoH;

influenced by the inconsistency of r. The modification on the tuple pointed by r can affect

op’s outputs, subsequently influencing the behavior of the operations that are dependent

on op. Instead of restoring op with a straightforward operation re-execution, transaction

healing corrects op’s outputs by directly visiting the memory addresses maintained in

the access cache. This approach fully eliminates the potential overhead brought by

index lookup. Meanwhile, transaction serializability is still preserved. The key reason

is that op’s accessing key remains the same despite of the raised inconsistency, and

therefore the corresponding access set is still unchanged4. The effect of op’s restoration

must be propagated to all operations dependent on op, which can be identified using

the statically-extracted program dependency graph. On retrieving an operation list O

comprising the operation that are directly dependent on op, transaction healing selects

the correct healing strategy for each operation according to the dependency type with op,

4 This statement is still valid even if inserts, deletes, or range queries exist.

32

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

as described below.

Restoring value-dependent operations. The restoration of an operation heal_op that

is value-dependent on op simply requires a direct access to the corresponding memory

addresses maintained in the access cache. This is because while the restoration can

modify op’s outputs that will be consumed as inputs by heal_op, the access set cached

for heal_op remains the same, due to the invariance of heal_op’s accessing key.

For a transaction issued from the stored procedure, transaction healing merely restores

operations in Lines 8 and 9 once detecting the inconsistency of Amy’s bonus account.

Such restoration is lightweight, as the access cache maintains the corresponding tu-

ple pointers that will be used by these operations, and the index lookup overhead is

consequently eliminated.

Restoring key-dependent operations. The restoration of an operation heal_op that is

key-dependent on op calls for a more sophisticated mechanism. This is because op’s

output directly serves as the accessing key for heal_op, and therefore the correction

of op’s output can affect the composition or even the size of heal_op’s access set.

Consequently, the maintained access cache should not be used for accelerating the

restoration of heal_op. Transaction healing solves this problem by invoking a complete

re-execution of heal_op, where the latest access set is retrieved through index lookup.

Such re-execution also updates the membership of the transaction’s read/write set.

Address Mode R-Timestamp Bookmark

0xAAAA R 25 Line 2

0xBBBB RW 27 Line 3

0xCCCC RW 10 Line 4

0xDDDD RW 14 Line 8

Bookmark Inputs Effects Outputs Access set

Line 2 Amy - Dan 0xAAAA

Line 3 Amy - 2000 0xBBBB

Line 4 Dan - 1200 0xCCCC

Line 6 Amy, 1980 1980 - 0xBBBB

Line 7 Dan, 1220 1220 - 0xCCCC

Line 8 Amy - 18 0xDDDD

Line 9 Amy, 19 19 - 0xDDDD 0xCCCD RW 16 Line 4

ACCESS CACHE

READ/WRITE SET

{ }

{ }

{ }

{ }

{ }

{ }

{ }

Delete

Insert

Figure 3.5: Healing inconsistency for the bank-transfer example.

We still use the bank-transfer procedure in Figure 3.1a to give a detailed explanation.

Figure 3.5 shows the scenario where the validation of an instantiated transaction fails

due to the detection that a committed concurrent transaction has updated Amy’s client

33

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

to Dave. The healing phase first corrects the output value from Dan to Dave for

the operation in Line 2. As this output is used as the accessing key in Lines 4 and 7,

transaction healing further re-executes these two operations to retrieve the correct access

set. In particular, the re-execution triggers an index lookup with the accessing key Dave.

This also leads to a partial update to the membership of the read/write set, where the

original element pointing to the memory address 0xCCCC is replaced by a new one

referring to the address 0xCCCD. The healing phase terminates by correcting the update

effects and outputs for these two operations.

Note that membership updates can cause deadlocks. Let us consider that a healing phase

is invoked after detecting an inconsistent element r in the read/write set during validation.

At this point, every element with a smaller memory address compared to r would have

been locked, as is guaranteed by the global order of the validation phase. However,

if a new element rn containing a smaller memory address than r is inserted into the

read/write set during the healing phase, the global order will be violated when attempting

to lock rn. Consequently, potential deadlocks can occur. Transaction healing resolves

this problem using a no-waiting deadlock prevention technique [BHG87, YBP+14]. On

confronting a failure when attempting to acquire the lock for rn, transaction healing

directly aborts the whole transaction instead of blindly spinning. This mechanism can be

further optimized by setting an upper bound controlling the maximum number of times

the lock request is attempted.

The read inconsistency within a transaction can be propagated through (indirect) oper-

ation dependencies. Transaction healing therefore recursively checks and restores all

the possibly non-serializable operations by traversing the statically extracted program

dependency graph in a breath-first approach. This essentially guarantees that any non-

serializable operation is restored exactly once, and the healing overhead is minimized.

The execution of a transaction resumes its validation once the healing phase completes.

The forward progress of the validation is guaranteed because of the finite capacity of a

transaction’s read/write set. A transaction is allowed to commit if all the elements in its

read/write set have been successfully validated. Transaction healing aborts a transaction

only if the deadlock-prevention mechanism is triggered during the healing phase, where

34

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

the membership of the read/write set is partially updated.

3.4.3 Committing Transactions at Scale

The commitment of a transaction installs all the locally buffered write effects to the

database state. In addition, all the updates will also be flushed to the persistent storage

for ensuring DBMS durability. Transaction healing leverages a variation of epoch-based

protocol [TZK+13] for committing transactions in a concurrent manner. The detailed

mechanism is presented in Algorithm 3.

Algorithm 3 Commit protocol in transaction healing.
Data: Read/write set S of the current transaction.

Write Phase:
Generate global timestamp glocal_ts;
Compute commit timestamp commit_ts;
foreach r in sorted(S) do

if r is accessed by any write operation then
Install writes for tuple R located at r.address;
Dump writes to persistent storage;
Overwrite timestamp of R with commit_ts;

foreach r in sorted(S) do
Unlock tuple located at r.address;

In transaction healing, a commit timestamp is a 64-bit unsigned integer, where the higher

order 32 bits contain a global timestamp and the lower order 32 bits contain a local

timestamp. The global timestamp is assigned with the value of a global epoch number E

that is periodically (e.g., every 10 ms) advanced by a designated thread in the system,

and the local timestamp is generated according to the specific thread ID. As an example,

given three threads for executing transactions, the first thread generates a local timestamp

from the list 0, 3, 6, ..., 3m, ..., while the third thread generates a local timestamp from

the list 2, 5, 8, ..., 3n+ 2, When committing a transaction, the corresponding thread

will assign the transaction with the smallest commit timestamp that is larger than (a) the

commit timestamp attached in any tuple read or written by the transaction and (b) the

thread’s most recently generated commit timestamp. On obtaining the commit timestamp

commit_ts, a transaction installs all the buffered writes to the database and assigns the

35

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

corresponding tuples with commit_ts. In particular, each thread persists its committed

transactions independently, and updates from transactions assigned with a same global

epoch number E can be dumped to the persistent storage as a group. When a transaction

finishes its commitment, it releases all its locks.

3.4.4 Guaranteeing Serializability

This section sketches an argument that transaction healing provides full serializability

for transaction processing.

Compared with OCC, transaction healing restores non-serializable operations to heal

inconsistent transaction states and query results. When processing a transaction whose

read/write set does not overlap with that of any concurrent one, the effect of transaction

healing is essentially equivalent to that of OCC. Now let us assume that an inconsistent

element r that is read by the transaction is detected during the validation. At this point,

we denote the set of elements with smaller memory address than r as Es, and the set

of elements with larger memory address as El. To restore the initial non-serializable

operation op that first reads the inconsistent r, transaction healing directly reloads the

latest value of the tuple’s global copy, which is referred to by r. This action does not

compromise serializability, because the lock associated with this tuple has already been

acquired by the current thread. After restoring op, transaction healing begins to restore

all the operations that are (possibly indirectly) dependent on op. Restoring operation opv

that is value-dependent on its parent operation only requires retrieving the latest values

of the tuples pointed by the access cache. This action does not affect the serializability.

On the one hand, if a tuple accessed by opv is pointed by an element in Es, then the tuple

access is consistent, because the current thread has exclusive privilege for accessing the

tuple; on the other hand, if a tuple accessed by opv is pointed by an element in El, then

the tuple access can be inconsistent. However, the remaining part of the validation phase

will lock and validate any element in El. Therefore, the raised inconsistency will be

healed. The restoration of an operation that is key-dependent on its parent operation,

however, can partially update the membership of read/write set. The potential deadlock

36

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

brought by such membership update is prevented by transaction healing, as transaction

healing attempts to lock any newly inserted element ri with a smaller memory address

than that of r. An uncommitted transaction will be aborted once any lock-acquisition

attempt fails during the membership update. Transaction healing guarantees forward

progress and final termination of transaction processing. This is because the read/write

set of any transaction maintains a finite number of elements, and the validation phase

certifies the consistency of any element for exactly once. To conclude, transaction

healing guarantees serializability when restoring non-serializable operations, and the

effect of transaction healing is equivalent to that of OCC.

3.4.5 Optimizing Dependent Transactions

Transaction healing optimizes the execution of dependent transactions, which must

perform reads for determining their full read/write sets [TA10, TDW+12]. Compared

with their independent counterparts, dependent transactions usually require more efforts

for resolving conflicting accesses, since the restoration of non-serializable key-dependent

operations can partially update the membership of the read/write set, and transaction

aborts can be invoked by the deadlock-prevention mechanism. Transaction healing

reduces these overheads by (1) avoiding unnecessary membership update by eliminating

false invalidations and (2) reducing the likelihood of deadlock occurrences by rearranging

global validation orders.

Eliminating false invalidations. During the validation phase, a false invalidation can

occur if any concurrent transactions accessing the same tuple modify a column that is not

read by the current transaction. Figure 3.6 shows a simplified example of such a case.

While transactions T1 and T2 both access tuple R, T1’s read is not compromised by

T2’s write. However, conventional OCC can still invalidate T1’s access when checking

R’s timestamp field. Such false invalidation is tolerable when processing independent

transactions, but the invoked healing phase can bring high overhead for dependent

transactions because of the partial membership update of the read/write set. Transaction

healing eliminates such overhead by maintaining a local copy for each read operation.

37

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Column 1 Column 2 … Column n Timestamp Visibility bit Lock bit

Conflicting tuple 𝑅

Txn 𝑇# Txn 𝑇$

Figure 3.6: False invalidation. Transaction T1 reads the first column while transaction
T2 writes the nth one. T1 is invalidated although the write installed by T2 does not affect
T1’s correctness.

Once the validation of a certain element fails, transaction healing directly checks the

value of the read column to determine whether a false invalidation occurs. This proposed

mechanism may incur additional overhead inherited from memory allocation. However,

our experiments confirm that such overhead is negligible.

Rearranging validation orders. Transaction healing can abort an uncommitted trans-

action when partially updating the membership of the read/write set, which is invoked

by the restoration of an inconsistent key-dependent operation. The key reason is that the

tuple accessing order in the healing phase may not be aligned with the global validation

order, and therefore attempts will be made to lock any tuple with comparatively smaller

memory address. Observing that most stored procedures in certain applications access

tables based on a tree schema [DAEA13, SMA+07], transaction healing consequently

sorts the elements in the read/write set according to any topological order of the tree

structure. In particular, elements pointing to the tuples extracted from the same table

are ordered based on the memory address. In this way, only tuples with larger order are

inserted into the read/write set during the membership update. As a result, the likelihood

of deadlock occurrences is greatly reduced.

Figure 3.7 shows the tree schema for the TPC-C benchmark. As the restoration of an

operation accessing District table never affects those accessing Warehouse table,

no deadlock can occur when healing the inconsistency of an element pointing to the

tuple from District table. Based on this principle, the possibility of transaction abort

caused by deadlock prevention can be significantly reduced.

38

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Warehouse

District

Customer Order NewOrder ……

1

2

3 4 5

Figure 3.7: Validation order in the TPC-C benchmark. The stored procedures modeled
in this benchmark touch Warehouse table and District table before accessing any
other tables.

3.4.6 Optimizing Independent Transactions

Transaction healing achieves optimal performance when processing independent transac-

tions, whose read/write sets can be determined according to the input arguments prior to

execution [CL12, TA10, TDW+12]. As transaction abort happens only when confronting

membership update during the healing phase, independent transactions processed using

the transaction healing protocol are guaranteed to be committed due to the absence

of key-dependency relations. Based on this observation, transaction healing further

optimizes the execution of such transactions by combining the validation phase with its

subsequent write phase. Accordingly, any write effect of a transaction can be directly

applied to the database state once the corresponding element in the read/write set has

passed validation. As a result, transaction healing reduces lock-holding duration for

independent transactions, increasing the overall level of concurrency when supporting

OLTP workloads.

3.4.7 Supporting Database Operations

Transaction healing supports the full spectrum of database operations that are expressible

by the SQL language. In this subsection, we discuss how different operations are handled

by transaction healing.

39

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Inserts and Deletes

When committing a transaction T , the timestamp of each tuple modified or created by T

is updated to the transaction’s commit timestamp. In addition, the visibility flag of each

tuple that is deleted by T is turned off. Transaction healing further relies on a garbage

collector to periodically clean up all the deleted tuples. To guarantee the correctness of

garbage collection, a reference counter is maintained for each tuple to count the number

of transactions that are currently accessing the tuple. A deleted tuple can be safely

removed from the database once its reference counter drops to 0.

We further explain how transaction healing handles insert operations in the presence of

conflicting operations using three scenarios.

In the first scenario, consider an insertion of a new tuple R by transaction T1 followed

by a read operation by another concurrent transaction T2 to read R. To insert R, T1

performs the insertion during its read phase, with the visibility flag of R set to false.

When T2 reads R, although R is added to T2’s read set, R is not visible to T2 due to its

visibility value (i.e., R does not exist from T2’s perspective). When T1 commits, the

visibility flag ofR will be turned on, indicating thatR is now visible to other transactions.

During the validation phase of T2, T2’s read operation that accesses R would be detected

to be non-serializable, and the healing phase will be triggered to restore all the affected

non-serializable operations.

In the second scenario, consider the reverse of the first scenario where a transaction T1

first attempts to read a non-existent tuple R followed by a concurrent transaction T2 that

inserts R. When T1 attempts to read the non-existent R, transaction healing will create a

dummy empty tuple Re to represent R with the visibility flag of Re set to off, and an

element corresponding to Re is inserted to T1’s read set. If T2 attempts to insert R into

the database, it must acquire the lock on Re before performing the real insertion. Once

T2 has passed the validation, tuple insertion is executed by directly copying R’s content

to Re. Suppose that T1 commits before T2. Both transactions can commit successfully

without confronting validation failure. However, if T2 commits before T1, T1 will detect

the modification of R’s timestamp during its validation phase, and a healing phase will

40

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

be triggered to heal the detected inconsistency.

In the third scenario, we consider the case where two concurrent transactions attempt to

insert the same tuple R. Suppose that T1’s insertion is performed before T2’s insertion

during their read phases. Similar to the discussion for the second scenario, a dummy

empty tuple Re would be created by T1’s insertion with its visibility flag turned off.

Subsequently, when T2 attempts to insert R, it would detect the presence of Re and an

element that points to Re will be added to T2’s read/write set. Should T2 validate and

commit before T1, T2’s insertion will be committed and the visibility flag for Re will be

turned on. Subsequently, T1’s validation will fail on detecting the modification of Re’s

timestamp; in this case, T1 will be aborted due to the integrity constraint violation.

We have demonstrated that transaction healing guarantees serializability in all the cases

where inserts are performed concurrently with conflicting operations. We conclude that

transaction serializability can be preserved with the existence of inserts and deletes.

Range Queries and Phantoms

The design of transaction healing naturally supports range queries that access a collection

of tuples in a table. However, range queries can result in the phantom problem [EGLT76].

Instead of utilizing the next-key locking mechanism [Moh90] that is specifically designed

for two-phase locking protocol, transaction healing solves this problem by leveraging

a mechanism that is first proposed by Silo [TZK+13]. Transaction healing records a

version number on each leaf node of a B+-tree to detect structural modifications to

the B+-tree. Any structural modification caused by inserts, deletes, or node splits will

increase the version number. When performing a range query in a transaction, transaction

healing records both the version number and the leaf node pointers to the read/write set.

During the validation phase, on detecting a structural change that is indicated by the

version mismatch, transaction healing attempts to heal the inconsistency by restoring the

corresponding non-serializable operations.

41

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

3.4.8 Supporting Ad-Hoc Transactions

In real-world applications, a database user can submit ad-hoc transactions without invok-

ing stored procedures that are defined prior to execution. Transaction healing processes

such type of transactions using the conventional OCC protocol, which is fully compatible

with the transaction healing mechanism. In the case that all the incoming transactions

are ad-hoc, transaction healing is equivalent to the conventional OCC for serializing

transactions. While it is technically possible to enable transaction healing for ad-hoc

transactions by building an efficient program analyzer that extracts dependency graphs at

runtime, there still exists two factors that may restrict the protocol’s effectiveness. First,

a database user may issue SQL statements within a transaction interactively, making

the extraction of dependency graphs difficult due to the absence of complete knowledge

of the transaction program. Second, most ad-hoc transactions may be executed only

once, and the overhead introduced by runtime program analysis can potentially outweigh

the benefits brought by transaction healing, making it unnecessary to perform transac-

tion healing to execute ad-hoc transactions. At current stage, we restrict the scope of

transaction healing to transactions that are issued from stored procedures, and leave the

investigation of supporting ad-hoc transactions as a future work.

3.5 Evaluation

In this section, we evaluate the effectiveness of transaction healing, by seeking to answer

the following key questions:

1. Why do the state-of-the-art OCC protocols not scale well under highly contended

workloads?

2. Can transaction healing scale linearly under different workloads?

All the experiments were performed on a multi-core machine running Ubuntu 14.04 with

four 12-core AMD Opteron Processor 6172 clocked at 2.1 GHz, yielding a total of 48

physical cores. Each core owns a private 64 KB L1 cache and a private 256 KB L2 cache.

42

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Every 6 cores share a 5 MB L3 cache and a 8 GB local DRAM. The machine has a 2 TB

SATA hard disk.

Through this section, we compare the following protocols:

HEALING. This is the transaction healing protocol proposed in this work.

OCC. This is the conventional OCC with several optimization techniques applied [YBP+14].

We have implemented the scalable timestamp-allocation mechanism proposed by Silo [TZK+13]

to improve system concurrency.

SILO. This is a variation of the conventional OCC protocol that is proposed by

Silo [TZK+13]. It adopts a variation of OCC and improves concurrency level by

eliminating the necessity for tracking anti-dependency relations.

2PL. This is the widely accepted two-phase locking (2PL) protocol [BHG87]. We

adopt no-waiting strategy for avoiding transaction deadlocks. We note that this strategy

is reported as the most scalable deadlock-prevention approach for 2PL-based proto-

cols [YBP+14].

HYBRID. This is a hybrid protocol that mixes the OCC and 2PL protocols for optimized

performance [Her90, Tho98, YD92]. HYBRID first executes an incoming transaction

using OCC, and switches over to executing it using 2PL protocol should the transaction

aborts due to OCC validation failure.

DT. This is a partitioned deterministic protocol that follows the design of existing

works [KKN+08, KN11, TDW+12]. It leverages coarse-grained partition-level locks

to serialize transaction executions. In particular, several optimization mechanisms,

including replication of read-only tables, were adopted [CJZM10, PCZ12].

We adopted two well-known benchmarks, namely TPC-C [tpc] and Smallbank [ACFR08],

to evaluate the system performance. For the TPC-C benchmark, we control the workload

contention by varying the number of warehouses. Specifically, the contention degree

increases with the decrease in the number of warehouses. For the Smallbank benchmark,

the degree of workload contention is controlled by a parameter θ, which indicates the

skewness of the Zipfian distribution. Increasing θ yields more contended workload.

43

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Our query-generation approach faithfully follows that employed by several previous

works [TZK+13, YBP+14].

3.5.1 Existing Performance Bottlenecks

We begin our evaluation with a detailed performance analysis on the state-of-the-art

OCC protocols. We measure the transaction throughput of OCC and SILO with different

degrees of workload contentions using the TPC-C benchmark. Figure 3.8 shows the

results produced with 46 threads. By decreasing the warehouse count from 48 to 2, the

performance of both protocols drops drastically. Specifically, when setting the number of

warehouses to 2, these two protocols respectively yield only 150 K and 60 K transactions

per second (tps), reflecting high sensitivity to workload contentions. To investigate

how transaction aborts influence system performance, we disable the validation phase

of both protocols. Such modification can result in non-serializable results due to the

absence of consistency checking, but the achieved transaction throughputs essentially

indicate the peak performance that could be attained without any aborts. As shown

in Figure 3.8, disabling the validation phase essentially yields 3 (OCC) to 12 (SILO)

times higher transaction throughput for highly contended workloads (see OCC − and

SILO −). In particular, the peak performance achieved by SILO can be 10-15% higher

than that of OCC after disabling the validation phase. The key reason is that the com-

mit protocol of SILO by design eliminates the necessity for tracking anti-dependency

relations [TZK+13], consequently leading to reduced locking overhead. Note that the

transaction throughput of both protocols can still deteriorate even after disabling the

validation phase. This is mainly because of lock thrashing effects [BHG87, YBP+14],

where concurrent transactions are waiting for the access privilege of contended locks.

Such a phenomenon exists universally in modern concurrency control protocols that re-

quire fine-grained locking scheme [YBP+14]. While the recently proposed deterministic

partitioned protocols can prevent such overhead [KKN+08, KN11, TA10, TDW+12],

the management of coarse-grained locks in these protocols incurs costly overhead when

processing cross-partition transactions. This is confirmed by our experiments presented

44

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

later in subsections.

OCC SILO OCC− SILO−

2 6 12 18 24 30 36 42 48

Number of warehouses

0

320

640

960

1280

1600
T

h
ro

u
g
h
p
u
t
(K

 t
p
s
)

Figure 3.8: transaction throughput with different degree of contentions. The number of
threads is set to 46.

We next analyze the overheads incurred by OCC protocols due to their abort-and-restart

mechanism. Figure 3.9a depicts the percentage of the total execution time spent on

transaction abort-and-restart. With the number of warehouses set to 2, OCC and SILO

respectively spent 69% and 91% of their execution time on aborting-and-restarting

transactions due to validation failure. This result confirms that the abort-and-restart

mechanism is the key contributor to the inefficiency of the state-of-the-art OCC protocols.

Figure 3.9b illustrates that both OCC and SILO achieve similarly high abort rate5 which

increases as expected with increasing data contention (i.e., lower number of warehouses).

Given the relatively weaker performance of SILO under highly contended workloads

compared to OCC, this indicates that SILO is more sensitive to high abort rate. The main

reason is that SILO starts its validation phase for a transaction only after locking its entire

write set, which therefore incurs more wasted effort for an aborted transaction. Indeed,

the concurrency control protocol adopted in Silo can be considered as a more optimistic

OCC scheme. While this design achieves comparatively higher transaction throughput

for low-contention workloads, its design suffers significant performance penalty when

the workload is highly contended.

In the experiments above, we confirm that the existing OCC protocols are not scalable

on multi-core architectures due to the expensive abort-and-restart mechanism. Given

5The abort rate is calculated as the number of transaction restarts divided by the number of committed
transactions.

45

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

OCC SILO

2 6 12 18 24 30 36 42 48

Number of warehouses

0.0

0.2

0.4

0.6

0.8

1.0

P
e

rc
e

n
ta

g
e

(x

1
0

0
%

)

(a) Percentage of allocated time.

2 6 12 18 24 30 36 42 48

Number of warehouses

0.00

0.16

0.32

0.48

0.64

0.80

A
b

o
rt

 r
a

te

(b) Abort rate.

Figure 3.9: Overhead of the abort-and-restart mechanism with different degree of
contentions. The number of threads is set to 46.

this, transaction healing is designed and implemented to achieve high scalability even

under highly contended workloads by reducing the abort-and-restart overhead.

3.5.2 Scalability

This subsection evaluates the scalability of transaction healing. Specifically, we attempt

to address the following questions: (1) whether transaction healing yields high transaction

throughput under workloads with different contentions; (2) whether transaction healing

achieves low latency when processing transactions; (3) whether transaction healing

sustains high performance in the presence of ad-hoc transactions; (4) whether transaction

healing achieves satisfactory performance in benchmarks comprising short-duration

transactions; and (5) how each proposed mechanism affects the system performance.

Transaction Throughput

We first investigate the robustness of transaction healing using the TPC-C benchmark

with 46 threads. We set the percentage of cross-partition transactions to 0 and change the

number of warehouses from 2 to 48 to decrease the workload contention. Figure 3.10

shows the results. All the protocols in comparison achieve near-linear scalability with

the number of warehouses set to 48. In particular, DT yields the highest transaction

throughput, due to the absence of cross-partition transactions. However, with the in-

46

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

crease of workload contention, the performance of OCC, SILO, 2PL, HYBRID, and

DT drop sharply, especially when the number of warehouses is set to 2. HEALING, in

contrast, sustains a relatively high transaction throughput that is very close to OCC’s

peak performance (denoted as OCC −) where the validation phase of the OCC protocol

is disabled. This observation essentially confirms that transaction healing protocol brings

little overhead to the system runtime, and it can scale well even when the workload is

highly contended.

HEALING OCC SILO 2PL HYBRID DT

2 6 12 18 24 30 36 42 48

Number of warehouses

0

360

720

1080

1440

1800

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

Figure 3.10: transaction throughput with different degree of contentions. The number
of threads is set to 46.

Figure 3.11 further presents the scalability of different protocols using the same bench-

mark. Under the highly contended workload shown in Figure 3.11a, transaction healing

achieves much higher transaction throughput than that of the other protocols. In contrast,

SILO achieves the worst performance. This is because SILO’s commit protocol is vul-

nerable to frequent transaction aborts. Although 2PL achieves 25% higher transaction

throughput compared to OCC, its long-duration locks decrease the concurrency degree,

making it less effective on multi-core architecture. HYBRID also achieves unsatisfactory

results, since its performance is severely restricted by the combination of OCC and 2PL

protocols. While the percentage of cross-partition transactions is set to 0 in this experi-

ment, DT still yields a low performance. The major reason is that the execution model

of DT forbids concurrent execution on a single partition, and therefore the number of

threads that can be utilized for processing transactions is strictly limited by the number of

warehouses in the TPC-C benchmark, consequently resulting in low resource utilization

rate. Compared to these protocols, transaction healing scales near linearly towards 46

47

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

HEALING OCC SILO 2PL HYBRID DT

1 6 12 18 24 30 36 42 46

Number of threads

0

140

280

420

560

700

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) 4 warehouses.

1 6 12 18 24 30 36 42 46

Number of threads

0

200

400

600

800

1000

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) 12 warehouses.

1 6 12 18 24 30 36 42 46

Number of threads

0

240

480

720

960

1200

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(c) 24 warehouses.

Figure 3.11: Transaction throughput for TPC-C benchmark with different degree of
workload contentions.

threads, achieving respectively 2.3 and 6.2 times higher throughput than that of 2PL and

SILO. This is because the transaction healing protocol heals any inconsistency that is

detected during the validation phase, and the expensive overhead caused by abort-and-

restart is completely eliminated with the help of the proposed optimization mechanisms.

Figure 3.11b and Figure 3.11c further illustrate that, while the performance of the other

five protocols improves under low-contention workload, transaction healing maintains

a high transaction throughput when scaling to 46 threads, demonstrating transaction

healing’s high scalability and robustness.

While transaction healing achieves a comparatively high transaction throughput when

supporting high-contention workloads, the experimental results reported above indicate

that transaction healing still suffers from performance degradation due to lock thrash-

ing [BHG87, YBP+14]. While recent research has proposed deterministic protocols

to overcome this problem, the management of coarse-grained locks in such protocols

incurs additional overhead when processing cross-partition transactions. Figure 3.12

shows the transaction throughput of each protocol with different percentage of cross-

48

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

HEALING OCC SILO 2PL HYBRID DT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of cross-partition transactions (x100%)

0

140

280

420

560

700

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) 4 warehouses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of cross-partition transactions (x100%)

0

200

400

600

800

1000

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) 12 warehouses.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of cross-partition transactions (x100%)

0

220

440

660

880

1100

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(c) 24 warehouses.

Figure 3.12: Transaction throughput for TPC-C benchmark with different percentage of
cross-partition transactions.

partition transactions. In this set of experiments, the number of threads is set to 46.

While all the other protocols achieve a stable performance that is not affected by the

percentage of cross-partition transactions, DT suffers from a significant drop in perfor-

mance when cross-partition transactions are introduced. Specifically, regardless of the

workload contentions, DT achieves a low transaction throughput when the percentage

of cross-partition transactions increases to 10%. This is because the coarse-grained

locking mechanism adopted by DT requires a transaction to lock all the partitions that

it accesses until it completes. Consequently, any concurrent transaction that needs to

access one of the locked partitions would be blocked. This experiment demonstrates that

existing deterministic protocols cannot perform well when supporting cross-partition

transactions.

Transaction Latency

Next, we analyze the transaction latency of HEALING when processing highly contended

workloads. We execute the TPC-C benchmark with the number of warehouses set to

49

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

4, and measure the processing durations for NewOrder transactions and Delivery

transactions. Both types of transactions are dependent transactions, which must perform

read operations to obtain its full read/write set. In particular, the program logic of

Delivery transactions is more complicated, and the processing latency can be much

longer compared to NewOrder transactions.

Table 3.1 shows the transaction latencies of different protocols for processing NewOrder

transactions. Compared with OCC, SILO, and 2PL, HEALING incurs a much shorter

latency with over 95% of the NewOrder transactions committed within 80 µs. In

contrast, the latencies for OCC, SILO, and 2PL are more varied, ranging from below

20 µs to over 640 µs. This is because the conventional abort-and-restart mechanism

adopted by these two protocols could incur a high overhead when the same transaction

has to be re-executed multiple times. Table 3.1 also presents the latencies achieved by

OCC and SILO with the validation phase disabled (denoted as OCC − and SILO −). The

reported numbers are very close to that obtained by HEALING, showing that the adopted

transaction healing protocol incurs little overhead to the system runtime. To conclude,

transaction healing enables efficient transaction processing as any transaction that fails

the validation will be healed without getting restarted from scratch.

We further analyze the latencies achieved by different protocols when processing

Delivery transactions, which comprise complex dependencies among operations.

As shown in Table 3.1, by disabling the validation phase, OCC commits 84.1% of

the Delivery transactions within 320 µs (denoted as OCC −). In this scenario, no

consistency check is performed during the execution, and therefore transactions will

always be committed without being any restarts. However, enabling the validation

phase significantly increases the transaction latency, and only 14.1% and 16.0% of the

transactions are committed within 320 µs respectively by OCC and SILO. This result

demonstrates the inefficiency of the abort-and-restart mechanism. Compared with these

two protocols, HEALING could achieve a much lower transaction latency. While the

healing of inconsistencies for dependent transactions could cause membership updates

of the read/write sets, HEALING is still able to commit nearly 90% of the transactions

within 640 µs. In addition, the transaction latency is strictly bounded within 1280 µs, and

50

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

hence the overall performance is much better than that achieved by OCC, SILO, and 2PL.

The experiments reported above demonstrate that the transaction healing protocol does

not incur high latency when processing different types of transactions.

Ad-Hoc Queries

HEALING processes ad-hoc transactions using conventional OCC protocol, which is

fully compatible with transaction healing. On detecting inconsistency during validation

phase, ad-hoc transactions will be directly aborted and restarted from scratch. In this

experiment, we randomly taint some transactions as ad-hoc transactions, and examine

how the transaction throughput of HEALING is influenced by the percentage of ad-hoc

transactions. Figure 3.13 shows the result with the number of warehouses set to 4. By

changing the percentage of ad-hoc transactions from 0% to 100%, the performance of

HEALING deteriorates smoothly, and finally degrades to the performance of conventional

OCC protocol. This is because HEALING’s transaction-processing scheme is essentially

equivalent to that of OCC when all the incoming transactions are ad-hoc. Given the

fact that most transactions in modern applications are generated from stored proce-

dures [SMA+07], we conclude that transaction healing can provide a great performance

boost when supporting real-world OLTP workloads.

HEALING OCC SILO 2PL HYBRID DT

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of ad-hoc transactions (x100%)

0

140

280

420

560

700

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

Figure 3.13: Transaction throughput with different percentages of ad-hoc transactions.
The number of threads is set to 46.

51

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Short-Duration Transactions

In the following experiments, we use the Smallbank benchmark to evaluate the per-

formance of HEALING for workloads with short-duration transactions. Recall that the

workload contention of the Smallbank benchmark is controlled by a parameter θ, which

indicates the skewness of the Zipfian distribution. Table 3.2 shows the percentage of

accesses to different keys based on the various Zipfian distributions by varying θ. Here,

the number of tuples in each table is set to 1,000. Note that the workload contention

grows exponentially with θ. The results in Table 3.2 show that the abort rates of OCC

and SILO climb rapidly from 0.007 to 0.324 and 0.403, respectively. Different from

these two protocols, HEALING did not abort any transaction as all the detected validation

failures were resolved with the healing phase.

Figure 3.14 shows the transaction throughput of different protocols with θ varying from

0.1 to 0.9. In this experiment, the number of threads is set to 24. With θ set to 0.1,

SILO achieves around 5% higher throughput compared to HEALING and OCC. This

is because the design of SILO’s concurrency control protocol eliminates the necessity

for checking anti-dependency relations. However, the trade-off for such an extreme

optimistic protocol is that it under-performs for high-contention workloads. In particular,

when θ = 0.9, SILO yields the lowest transaction throughput among all the protocols

being compared. However, the performance of HEALING remains stable for different

workload contentions. Under highly contended workload, the transaction throughput

achieved by HEALING is 4.5 times higher than other protocols, and this performance is

very close to the peak throughput that is achieved by disabling OCC’s validation phase.

This result essentially demonstrates the low overhead of transaction healing.

We further compare the transaction latency of HEALING with that of OCC and SILO

in Table 3.3. When θ=0.5, the three protocols in comparison yield similar transaction

latency. In HEALING, 25% of the transactions are committed within 4.86 µs. This

number is very close to that achieved by OCC and SILO, which are 4.79 µs and 5.45

µs, respectively. This result essentially indicates that transaction healing brings little

overhead to the system runtime when processing workloads with low contentions. When

52

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

HEALING OCC SILO 2PL HYBRID

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Contention level (theta)

0

800

1600

2400

3200

4000

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

Figure 3.14: Transaction throughput with different degree of contentions. The number
of threads is set to 24.

supporting highly contended workloads, transaction healing generates remarkably lower

latency compared to the other protocols. Specifically, 95% of the transactions executed

by transaction healing complete within 11.45 µs when θ = 0.9; in contrast, the latency

for OCC and SILO increases to 36.14 µs and 42.54 µs, respectively. This result indicates

that the state-of-the-art OCC protocols cannot process each transaction uniformly, and

the abort-and-restart mechanism severely hurts the latency of some transactions in the

workload, hence causing degradation to the overall system performance.

Runtime Overhead

In this section, we analyze the runtime overhead incurred by transaction healing. Com-

pared with OCC, transaction healing maintains an additional access cache during the

read phase of the transaction execution. In addition, a local copy of any tuple that is

read by the transaction is held to eliminate potential overhead caused by false invali-

dation when processing dependent transactions. Such overheads can potentially cause

observable performance degradation when processing low-contention workloads. To

precisely measure the performance overhead associated with transaction healing, we

executed the TPC-C benchmark with the number of warehouses set to be equal to the

thread count. To minimize conflicting actions, we allocate each thread to be responsible

for processing transactions associated with a single warehouse. Table 3.4 shows the

53

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

experimental results. Without maintaining the access cache and local copies for read

operations, transaction healing yields 1139 K tps when processing transactions with 46

threads (denoted by Normal). Maintaining the access cache incurs little overhead to the

system runtime, and transaction healing still achieves 1087 K tps with 46 threads enabled

(denoted by +Access Cache). Similarly, the overhead caused by the maintenance of local

copies for read operations is also negligible, and less than 2% performance degradation

is observed (denoted by +Read Copy). Hence, we conclude that transaction healing

brings little overhead to the system runtime when processing low-contention workloads.

The experiments presented above demonstrate that the transaction healing protocol can

achieve both high scalability and robustness for transaction processing on multi-core

architectures, with little performance overhead brought to the system runtime.

3.6 Summary

We have introduced a new concurrency control protocol, called transaction healing,

that scales the conventional OCC towards dozens of cores even under highly contended

workloads. Transaction healing leverages the statically extracted program dependency

graph to restore any non-serializable operations once inconsistency is detected during

validation. By maintaining a thread-local access cache, the overhead for committing

conflicting transactions is significantly reduced. Our experimental study confirmed that

transaction healing can scale near-linearly, yielding much higher transaction throughput

than the state-of-the-art OCC implementations.

54

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

Transaction type Latency (µs) HEALING OCC SILO

NewOrder 10 - 20 0.2% 0% 3.5%

20 - 40 36.7% 13.7% 25.9%

40 - 80 59.1% 32.1% 28.8%

80 - 160 2.7% 28.4% 28.1%

160 - 320 1.3% 17.9% 7.8%

320 - 640 0% 5.6% 4.7%

640 - INF 0% 2.3% 1.2%

Delivery 10 - 80 0% 0.3% 0.8%

80 - 160 0.3% 0% 0%

160 - 320 41.1% 14.1% 16.0%

320 - 640 48.4% 31.4% 24.2%

640 - 1280 10.2% 34.6% 37.9%

1280 - 2560 0% 13.8% 16.8%

2560 - 5120 0% 4.0% 3.9%

5120 - INF 0% 1.7% 0.5%

Transaction type Latency (µs) 2PL OCC − SILO −

NewOrder 10 - 20 1.1% 0% 4.8%

20 - 40 29.2% 34.0% 45.3%

40 - 80 41.4% 62.8% 42.0%

80 - 160 19.9% 3.2% 7.7%

160 - 320 6.7% 0% 0.2%

320 - 640 1.5% 0% 0%

640 - INF 0.3% 0% 0%

Delivery 10 - 80 1.4% 0% 0%

80 - 160 1.6% 0.6% 1.4%

160 - 320 29.6% 84.1% 69.3%

320 - 640 38.1% 14.0% 22.7%

640 - 1280 21.3% 1.2% 6.6%

1280 - 2560 7.5% 0% 0%

2560 - 5120 0.6% 0% 0%

5120 - INF 0% 0% 0%

Table 3.1: Transaction latency for TPC-C benchmark. The number of warehouses is set
to 4, and the number of threads is set to 46.

55

Chapter 3. Transaction Healing: A Robust Concurrency Control Protocol
on Multi-Cores

θ 1st 2nd 10th 100th Abort rate

0.1 0.25% 0.24% 0.20% 0.16% 0 / 0.007 / 0.007

0.2 0.45% 0.39% 0.29% 0.18% 0 / 0.008 / 0.008

0.3 0.78% 0.63% 0.40% 0.19% 0 / 0.009 / 0.009

0.4 1.34% 1.02% 0.55% 0.22% 0 / 0.013 / 0.010

0.5 2.26% 1.60% 0.74% 0.22% 0 / 0.016 / 0.012

0.6 3.70% 2.45% 0.95% 0.24% 0 / 0.024 / 0.023

0.7 5.86% 3.60% 1.20% 0.23% 0 / 0.047 / 0.084

0.8 8.91% 5.17% 1.48% 0.23% 0 / 0.251 / 0.347

0.9 13.01% 7.06% 1.72% 0.21% 0 / 0.324 / 0.403

Table 3.2: The percentage of accesses to the first, second, 10th, and 100th most popular
keys in Zipfian distributions for different values of θ. The last column shows the abort
rates of HEALING, OCC, and SILO respectively.

θ Percentile HEALING OCC SILO

0.5 25% 4.86 µs 4.79 µs 5.45 µs

80% 8.52 µs 8.57 µs 9.02 µs

95% 10.63 µs 11.12 µs 11.58 µs

0.7 25% 4.55 µs 4.25 µs 3.20 µs

80% 9.12 µs 8.43 µs 7.75 µs

95% 11.84 µs 12.74 µs 12.34 µs

0.9 25% 4.57 µs 2.60 µs 2.21 µs

80% 9.14 µs 5.22 µs 4.50 µs

95% 11.45 µs 36.14 µs 42.54 µs

Table 3.3: Transaction latency for Smallbank benchmark. The number of threads is set
to 24.

#threads 8 16 24 32 40 46

Normal (K tps) 328 606 840 971 1088 1139

+Access Cache (K tps) 325 602 811 937 1036 1087

+Read Copy (K tps) 314 588 790 924 1015 1067

Table 3.4: Transaction throughput when processing the TPC-C benchmark. The number
of warehouses is set to be equal to the thread count.

56

CHAPTER 4
PACMAN: A Parallel Logging and Recovery

Mechanism on Multi-Cores

4.1 Introduction

In the previous chapter, we have demonstrated that main-memory DBMSs equipped

with scalable concurrency control protocols can power OLTP applications at very high

throughput of millions of transactions per second on a multi-core computing server.

However, system robustness can be the Achilles’ heel of modern main-memory DBMSs.

To preserve durability, a DBMS continuously persists transaction logs during execution

to ensure that the database can be restored to a consistent state after a failure, with all the

committed transactions reflected correctly.

Existing approaches for DBMS logging can be broadly classified into two categories,

each characterized by different granularities and performance emphasis. Originally

designed for disk-based DBMSs, tuple-level logging schemes, which include physical

logging (a.k.a. data logging) and logical logging (a.k.a. operation logging)1, propa-

gate every tuple-level modification issued from a transaction to the secondary storage

prior to the transaction’s final commitment [MHL+92]. Such a heavyweight, fine-

grained approach can generate tens-of-gigabyte of logging data per minute, causing

over 40% performance degradation for transaction execution in a fast main-memory

DBMSs [MWMS14b, ZTKL14a]. However, from the perspective of database recov-

1 In this chapter, we follow the definitions presented in [GR92].

57

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

ery, tuple-level log recovery can be easily performed in parallel, and the recovery time

can be further reduced by applying the last-writer-wins rule (a.k.a. Thomas write

rule [ZTKL14a]). As an alternative to tuple-level logging, transaction-level logging,

or command logging [MWMS14b], is initially invented for main-memory DBMSs that

leverage deterministic execution model for processing transactions [KKN+08, SMA+07,

TDW+12]. In contrast to common practice, most transactions in this type of DBMSs

are issued from predefined stored procedures. In this scenario, transaction-level logging

can simply dump transaction logic, including a stored procedure identifier and the corre-

sponding query parameters, into secondary storage. This coarse-grained strategy incurs

very low overhead to in-memory transaction processing. However, it also significantly

slows down the recovery process, as transaction-level log recovery is widely believed

to be hard to parallelize [MWMS14b, ZTKL14a]. To achieve high performance in both

transaction processing and failure recovery, recent efforts have largely focused on ex-

ploiting new hardware (e.g., non-volatile memory) to minimize the runtime overhead

caused by tuple-level logging [JPS+10, ORS+11, WJ14, ZTKL14a].

In this chapter, we present PACMAN, a parallel failure recovery mechanism that is

specifically designed for lightweight, coarse-grained transaction-level logging in the

context of main-memory multi-core DBMSs. The design of PACMAN is inspired by two

observations. First, DBMSs utilizing transaction-level logging issue transactions from

stored procedures. This allows PACMAN to analyze the stored procedures to understand

the application semantics. Second, DBMSs recover lost database states by re-executing

transactions in their original commitment order, and this order is determined before

system crash. This allows PACMAN to parallelize transaction-level log recovery by

carefully leveraging the dependencies within and across transactions.

PACMAN models the transaction-level log recovery as a pipeline of data-flow processing.

This is accomplished by incorporating a combination of static and dynamic analyses. At

compile time, PACMAN conservatively decomposes a collection of stored procedures into

multiple conflict-free units, which are organized into a dependency graph that captures

potential happen-before relations. This prior knowledge enables fast transaction-level

log recovery with a high degree of parallelism, and this is achieved by generating an

58

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

execution schedule through exploiting the availability of the runtime parameter values of

the lost transactions.

Unlike many state-of-the-art database logging-and-recovery schemes [JPS+10, ORS+11,

WJ14, ZTKL14a], PACMAN does not make any assumption on the performance of

the underlying hardware. It is also orthogonal to data layouts (e.g., single-version

or multi-version, row-based or column-based) and concurrency control schemes (e.g.,

two-phase locking or timestamp ordering), and can be applied to many main-memory

DBMSs, such as Silo [TZK+13] and Hyper [KN11]. PACMAN’s analysis approach also

departs far from the existing, purely static, program partitioning and transformation

techniques [CMAM12, PJHA10, RGS12, SLSV95], in that PACMAN yields a program

decomposition that is especially tailored for the execution of pre-ordered transaction

sequences, and a higher degree of parallelism is attained by incorporating runtime

information during failure recovery.

In contrast to the existing transaction-level log recovery mechanism [MWMS14b] that

relies on partitioned data storage for parallelization (i.e., two transaction-level logs

from different transactions accessing different data shards could be replayed in parallel),

PACMAN is the first parallel recovery mechanism for transaction-level logging scheme

that goes beyond partitioned-data parallelism. Specifically, PACMAN innovates with a

combination of static and dynamic analyses that enable multiple recovery operations to

be parallelized even when accessing the same data shard.

We implemented PACMAN as well as several state-of-the-art recovery schemes in Pelo-

ton [PAA+17], a fully fledged main-memory DBMS optimized for high-performance

multi-core transaction processing. Through a comprehensive experimental study, we

spotted several performance bottlenecks of existing logging-and-recovery schemes for

main-memory DBMSs, and confirmed that PACMAN can significantly reduce recovery

time without bringing any costly overhead to transaction processing.

We organize the chapter as follows: Section 4.2 reviews durability techniques for main-

memory DBMSs. Section 4.3 provides an overview of PACMAN. Section 4.4 demon-

strates how PACMAN achieves fast failure recovery with a combination of static and

59

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

dynamic analyses. Section 4.5 discusses the potential limitations of PACMAN. Sec-

tion 4.6 presents PACMAN’s implementation details. We report extensive experiment

results in Section 4.7 and concludes this chapter in Section 4.8.

4.2 DBMS durability

A main-memory DBMS employs logging and checkpointing mechanisms during transac-

tion execution to guarantee the durability property.

4.2.1 Logging

A main-memory DBMS continuously records transaction changes into secondary storage

so that the effects of committed transactions can persist even in the midst of system crash.

Based on the granularity, existing logging mechanisms for main-memory DBMSs can be

broadly classified into two categories: tuple-level logging and transaction-level logging.

Initially designed for disk-based DBMSs, tuple-level logging keeps track of the im-

ages of modified tuples and persists them into secondary storage before the transaction

results are returned to the clients. According to the types of log contents, tuple-level

logging schemes can be further classified into two sub-categories: (1) physical logging,

which records the physical addresses and the corresponding tuple values modified by a

transaction; and (2) logical logging, which persists the write actions and the parameter

values of each modification issued by a transaction. Although logical logging usually

generates smaller log records compared to physical logging, its assumption of action

consistency [GR92], which requires each logical operation to be either completely done

or completely undone, renders it unrealistic for disk-based DBMSs. Hence, many conven-

tional disk-based DBMSs including MySQL [mys] and Oracle [?] adopt a combination

of physical logging and logical logging, or called physiological logging, to minimize log

size while addressing action inconsistency problem. While disk-based DBMS leverages

write-ahead logging to persist logs before the modification is applied to the database state,

main-memory DBMSs can delay the persistence of these log records until the commit

60

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

phase of a transaction [DFI+13, ZTKL14a]. This is because such kind of DBMSs main-

tain all the states in memory, and dirty data is never dumped into secondary storage. This

observation makes it possible to record only after images of all the modified tuples for a

main-memory DBMS, and logical logging can be achieved, as the action inconsistency

problem in disk-based DBMSs never occurs in the main-memory counterparts.

Transaction-level logging, or command logging, is a new technique that is initially de-

signed for deterministic main-memory DBMSs [MWMS14b]. As this type of DBMSs

require the applications to issue transactions as stored procedures, the logging compo-

nent in such a DBMS therefore only needs to record coarse-grained transaction logic,

including the stored procedure identifier and the corresponding parameter values, into

secondary storage; updates of any aborted transactions are discarded without being

persisted. A well-known limitation of transaction-level logging is that the recovery time

can be much higher compared to traditional tuple-level logging schemes, and existing

solutions resort to replication techniques to mask single-node failures. The effectiveness

of this mechanism, however, is heavily dependent on the networking speed, which in

many circumstances (e.g., geo-replicated) is unpredictable [CDE+12].

A major optimization for DBMS logging is called group commit [DKO+84, GK85],

which groups multiple log records into a single large I/O so as to minimize the logging

overhead brought by frequent disk accesses. This optimization is widely adopted in both

disk-based and main-memory DBMSs.

4.2.2 Checkpointing

A main-memory DBMS periodically persists its table space into secondary storage to

bound the maximum recovery time. As logging schemes in main-memory DBMSs do

not record before images of modified tuples, these DBMSs must perform transactionally-

consistent checkpointing (rather than fuzzy checkpointing [LE93]) to guarantee the

recovery correctness. Retrieving a consistent snapshot in a multi-version DBMS is

straightforward, as the checkpointing threads in this kind of DBMSs can access an

older version of a tuple in parallel with any active transaction, even if the transaction

61

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

is modifying the same tuple. However, for a single-version DBMS, checkpointing

must be explicitly made asynchronous without blocking on-going transaction execu-

tion [KKN+08, KN11, ZTKL14a].

The checkpointing scheme in a DBMS must be compatible with the adopted logging

mechanism. While physical logging requires the checkpointing threads to persist both

the content and the location of each tuple in the database, logical logging and command

logging only require recording the tuple contents during checkpointing.

4.2.3 Failure Recovery

A main-memory DBMS masks outages using persistent checkpoints and recovery logs.

Once a system failure occurs, the DBMS recovers the most recent transactionally-

consistent checkpoint from the secondary storage. To recover the checkpoints persisted

for physical logging, the DBMS only needs to restore the table space, and the database

indexes can be reconstructed lazily at the end of the subsequent log recovery phase.

However, recovering the checkpoints persisted for logical logging and command logging

requires the DBMS to reconstruct the database indexes simultaneously with the table

space restoration. After checkpoint recovery completes, the DBMS subsequently reloads

and replays the durable log sequences according to the transaction commitment order,

in which manner the DBMS can reinstall the lost updates of committed transactions

correctly.

4.2.4 Performance Trade-Offs

Based on the existing logging-and-recovery mechanisms, it is difficult to achieve high

performance in both transaction processing and failure recovery in a main-memory

DBMS: fine-grained tuple-level logging lowers transaction rate since more data is

recorded; coarse-grained transaction-level logging slows down failure-recovery phase

as it incurs high computation overhead to replay the logs [MWMS14b, ZTKL14a]. As

we shall see, our proposed PACMAN offers fast failure recovery without introducing

additional runtime overhead.

62

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

4.3 PACMAN Overview

PACMAN aims at providing fast failure recovery for modern main-memory DBMSs that

execute transactions as stored procedures [KKN+08, SMA+07, TDW+12]. A stored

procedure is modeled as a parameterized transaction template identified by a unique

name that consists of a structured flow of database operations. For simplicity, we respec-

tively abstract the read and write operations in a stored procedure as var←read(tbl,

key) and write(tbl, key, val). Both operations search tuples in the table

tbl using the candidate key called key. The read operation assigns the retrieved value

to a local variable var, while the write operation updates the corresponding value to

val. Insert and delete operations are treated as special write operations. A client issues

a request containing a procedure name and a list of arguments to initiate the execution of

a procedure instance, called a transaction. The DBMS dispatches a request to a single

worker thread, which executes the initiated transaction to either commit or abort.

PACMAN is designed for transaction-level logging [MWMS14b] that minimizes the

runtime overhead for transaction processing. The DBMS spawns a collection of logger

threads to continuously dump committed transactions to the secondary storage. To

limit the log file size and facilitate parallel recovery, the DBMS stores log entries into a

sequence of files referred to as log batches. Each log entry records the stored procedure

being invoked together with its input parameter values. The entries in each log batch

are strictly ordered according to the transaction commitment order. The sequence of log

batches are reloaded and processed in order during recovery.

Both the logging and log reloading can be performed in parallel, and we refer to Sec-

tion 4.6 for detailed discussions. In this chapter, we focus on parallelizing the replay of

the logs generated by transaction-level logging.

The workflow of PACMAN is summarized in Figure 4.1. At compile time, PACMAN

performs a static analysis of the stored procedures to identify opportunities for parallel

execution. This analysis is performed in two stages. In the first stage, each stored

procedure is analyzed independently to identify the flow and data dependencies among

63

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Dynamic analysisStatic analysis

Failure occurs & recovery begins Recovery ends

Compilation Checkpoint recovery Log recovery

Execution begins

Figure 4.1: Workflow of PACMAN.

its operations. A flow dependency between two operations constrains the execution

ordering between these operations, while a data dependency between two operations

indicates that these operations could potentially conflict (i.e., one is reading and the other

is writing the same tuple). Based on the identified dependencies, the stored procedure

is segmented into a maximal set of smaller pieces which are organized into a directed

acyclic graph, referred to as a local dependency graph. This graph explicitly captures

the possible parallelization opportunities as well as the execution ordering constraints

among the pieces. In the second stage, the local dependency graphs derived from the

stored procedures are integrated into a single dependency graph, referred to as a global

dependency graph. This graph captures execution ordering among the different subsets

of pieces from all the procedures.

During recovery, PACMAN generates an execution schedule for each log batch using

the global dependency graph. A straightforward approach to replay the log batches

would be executing the schedules serially following the order of the log batches. For

each schedule, instantiations of the stored procedure pieces could be executed in parallel

following the execution ordering constraints derived from the global dependency graph.

To go beyond the execution parallelism obtained from static analysis, PACMAN further

applies a dynamic analysis of the generated execution schedules to obtain a higher degree

of parallelism in two ways. First, by exploiting the availability of the runtime procedure

parameter values, PACMAN enables further intra-batch parallel executions. Second,

by applying a pipelined execution optimization, PACMAN enables inter-batch parallel

executions where different log batches are replayed in parallel.

64

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

In the following section, we discuss the design of PACMAN in detail.

4.4 PACMAN Design

PACMAN achieves speedy failure recovery with a combination of static and dynamic

analyses. In this section, we first show how PACMAN leverages static analysis to

extract flow and data dependencies out of predefined stored procedures at compile time

(Section 4.4.1). We then explain how the static analysis can enable coarse-grained parallel

recovery (Section 4.4.2). After that, we discuss how dynamic analysis is used to achieve

a high degree of parallelism during recovery time (Section 4.4.3 and Section 4.4.4).

We further elaborate how PACMAN recovers ad-hoc transactions without degrading the

performance (Section 4.4.5).

4.4.1 Static Analysis

PACMAN performs static analysis at compile time to identify parallelization opportunities

both within and across transactions. This is captured through detecting the flow and data

dependencies within each stored procedure and among different stored procedures.

Intra-Procedure Analysis

PACMAN statically extracts operation dependencies from each stored procedure and con-

structs a local dependency graph to characterize the execution ordering constraints

among the operations in the procedure. Following classic program-analysis tech-

niques [NNH99, WCT16, YC16], PACMAN identifies flow dependencies that capture

two types of relations present in the structured flow of a program: (1) define-use relation

between two operations where the value returned by the preceding operation is used as

input by the following operation; (2) control relation between two operations where the

output of the preceding operation determines whether the following operation should be

executed. Flow dependencies are irrelevant to operation type (e.g., read, write, insert, or

delete), and any operation can form flow dependencies with its preceding operations.

65

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

1. PROCEDURE Transfer(src, amount){

2. dst<-read(Family, src, Spouse)

3. if(dst!=“NULL”){

4. srcVal<-read(Current, src)

5. write(Current, src, srcVal-amount)

6. dstVal<-read(Current, dst)

7. write(Current, dst, dstVal+amount)

8. bonus<-read(Saving, src)

9. write(Saving, src, bonus+1)

10. }

11. }

Line 2

Line 4

Line 7

Line 5

Line 6

Line 9

Line 8

(a) Stored procedure. (b) Dependencies.

Figure 4.2: Bank-transfer example. (a) Stored procedure. (b) Flow (solid lines) and data
(dashed lines) dependencies.

These two relations indicate the happen-before properties among operations, and partially

restrict the execution ordering of the involved operations in a single stored procedure.

To illustrate these dependencies, consider the pseudocode in Figure 4.2a resembling

a bank-transfer example. This stored procedure transfers an amount of money from a

user’s current account to her spouse’s account, and adds one dollar bonus to the user’s

saving account. We say that the operation in Line 5 is flow-dependent on that in Line 4,

because the write operation uses the variable srcVal defined by the preceding read

operation. Operations in Lines 4-9 are flow-dependent on the preceding read operation in

Line 2 that generates the variable dst, which is placed on the decision-making statement

in Line 3.

Classic program-analysis techniques, including points-to analysis [Ste96] and control-

dependency analysis [All70], can efficiently extract flow dependencies from stored

procedures, and two flow-independent operations can be potentially executed in parallel

at runtime [AS92]. However, such analysis approaches ignore the data conflicts inherited

in database accesses. To address this problem, PACMAN further identifies data depen-

dencies among operations to capture their potential ordering constraints. Specifically,

we say that two operations are data-dependent if both operations access the same table

and at least one of them is a modification operation. Note that an insert or a delete

operation can also form data-dependent relations with other operations if both operate on

66

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

the same table. In the bank-transfer example, operations in Lines 4 and 5 are mutually

data-dependent because they both access the Current table and one of them updates

the table. All the dependencies in bank-transfer example are illustrated in Figure 4.2b.

The flow dependencies and data dependencies altogether can constrain the execution

ordering of the database operations in a single stored procedure. However, they differ in

detailed semantics. A flow dependency captures must-happen-before semantics, meaning

that a certain operation can never be executed until its flow-dependent operations have

finished execution. In contrast, a data dependency in fact only captures may-happen-

before semantics, and runtime information can be incorporated to relax this constraint,

as will be elaborated in Section 4.4.3.

Based on these dependencies, PACMAN decomposes each procedure into a maximal

collection of parameterized units called procedure slices (or slices for short) that satisfy

the following two properties: (1) each slice is a segment of a procedure program such that

mutually data-dependent operations are contained in the same slice, and (2) whenever

two operations x and y are in the same slice such that y is flow-dependent on x, then any

operation that is between x and y must also be contained in that slice. Figure 4.3 shows

the decomposition of the bank-transfer example into three slices (denoted by T1, T2, and

T3).

The set of slices decomposed from a stored procedure can be represented by a directed

acyclic graph referred to as a local dependency graph. The nodes in the graph correspond

to the slices; and there is a directed edge from one slice si to another slice sj if there

exists some operation oj in sj that is flow-dependent on some operation oi in si. The

local dependency graph captures the execution order among the slices in the procedure

as follows: for any two distinct slices si and sj in the graph, si must be executed before

sj if si is an ancestor of sj in the graph; otherwise, both slices could be executed in

parallel if si is neither an ancestor nor a descendant of sj in the graph.

Figure 4.5a illustrates the local dependency graph for the Transfer procedure in the

bank-transfer example. Observe that the operations in Lines 4-7 of Figure 4.2a are put

into the same slice T2 because these operations are mutually data-dependent. Slices T2

67

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PROCEDURE Transfer(src, amount){

// Slice

dst<-read(Spouse, src)

// Slice

if(dst!=“NULL”){

srcVal<-read(Current, src)

write(Current, src, srcVal-amount)

dstVal<-read(Current, dst)

write(Current, dst, dstVal+amount)

}

// Slice

if(dst!=“NULL”){

bonus<-read(Saving, src)

write(Saving, src, bonus+1)

}

}

Figure 4.3: Procedure slices in bank-transfer example.

and T3 are both flow-dependent on T1 because the operations in T2 and T3 cannot be

executed until the variable dst has been assigned in the preceding read operation in

Line 2.

Inter-Procedure Analysis

PACMAN further performs inter-procedure analysis to identify operation dependencies

among the stored procedures. These dependencies are represented by a global depen-

dency graph which is formed by integrating the local dependency graphs from all the

stored procedures.

Before we formally define a global dependency graph, we first extend the definition of

data-dependent operations to data-dependent slices. Given two procedure slices si and

sj , where si and sj are slices from two distinct stored procedures, we say that these

slices are data-dependent if si contains some operation oi, sj contains some operation

oj , and both operations are data-dependent.

The global dependency graph G for a set of stored procedures P is a directed acyclic

graph where each node vi in G represents a subset of procedure slices from the local

68

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

dependency graphs associated with P . There is a directed edge from a node vi to another

node vj in G if vi contains some slice si, vj contains some slice sj , and both si and sj

are from the same stored procedure such that sj is flow-dependent on si. The nodes in G

satisfy the following four properties: (1) each slice in P must be contained in exactly

one node in G; (2) two slices that are data-dependent must be contained in the same

node; (3) if two nodes in G are reachable from each other, these two nodes are merged

into a single node; and (4) if a node contains two slices from the same stored procedure,

these two slices are merged into a single slice.

For convenience, we refer to the set of slices associated with each node in G as a block,

and we say that a block Bj is dependent on another block Bi in G if there is a directed

edge from Bi to Bj .

While a local dependency graph captures only the execution ordering constraints among

slices from the same stored procedure, a global dependency graph further captures the ex-

ecution ordering constraints among slices from different stored procedures. Specifically,

for any two slices si and sj in G, where si is contained in block Bi and sj is contained

in block Bj , si must be executed before sj if Bi is an ancestor of Bj in G; otherwise,

both slices could be executed in parallel if Bi is neither an ancestor nor a descendant of

Bj in G.

To give a concrete example, we introduce a second stored procedure, named Deposit,

that deposits an amount to some person’s bank account, as shown in Figure 4.4. The

local dependency graphs for these two procedures as well as the global dependency

graph for them are shown in Figure 4.5. Observe that T2 and D1 are data-dependent

slices residing in same block Bβ . For simplicity, the dependency from Bα and Bγ is

omitted in the figure as it can be inferred from both the dependency from Bα to Bβ as

well as the dependency from Bβ to Bγ .

4.4.2 Recovery Execution Schedules

In this section, we explain how PACMAN could parallelize recovery from the log batches

by exploiting the global dependency graph derived from static analysis.

69

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PROCEDURE Deposit(name, amount, nation){

// Slice

tmp<-read(Current, name)

write(Current, name, tmp+amount)

// Slice

if(tmp+amount>10000){

bonus<-read(Saving, name)

write(Saving, name, bonus+0.02*tmp)

}

// Slice

if(tmp+amount>10000){

count<-read(Stats, nation)

write(Stats, nation, count+1)

}

}

Figure 4.4: Procedure slices in bank-deposit example.

Slice

Slice

Slice

(a) Local dependency graph for Transfer.

(b) Local dependency graph for Deposit. (c) Global dependency graph.

Slice

Slice Slice

Block

Start

End

Slice

Slice

Slice

Slice

Slice
Block

Block

Slice

Block

Figure 4.5: (a) and (b): Local dependency graphs for Transfer and Deposit
procedures. (c): Global dependency graph. Slices within the same dashed rectangle
belong to the same block. Solid lines represent inter-block dependencies.

During recovery, PACMAN generates an execution schedule for each log batch using the

global dependency graph (GDG). We explain this process using the example illustrated

in Figure 4.6 for a simple log batch containing three transactions: transactions Txn1

and Txn3 invoke the Transfer procedure, while transaction Txn2 invokes the Deposit

70

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Parameter values for a log batch

Txn1:

Txn2:

Txn3:

Txn1

Txn2

Txn3

Piece-set Piece-set

Piece-set

Piece-set

Figure 4.6: Execution schedule for a log batch containing three transactions.

procedure.

Recall that PACMAN applies a static analysis to segment each stored procedure into

multiple slices to facilitate parallel execution. Thus, each invocation of a stored pro-

cedure is actually executed in the form of a set of transaction pieces (or pieces for

short) corresponding to the slices for that procedure. The execution schedule shown in

Figure 4.6 for the three transactions is actually a directed acyclic graph of the transaction

pieces that are instantiated from the GDG in Figure 4.5.

Each transaction piece is denoted by P tb , where t identifies the transaction order in

the log batch and b identifies the block identifier in the GDG. For instance, Txn2 is

instantiated into three pieces: P 2
β , P 2

γ and P 2
δ . The directed edges among these pieces

for a transaction reflect the dependencies of their corresponding slices from the GDG.

The pieces from all three transactions are organized into four piece-sets (PSα, PSβ ,

PSγ , and PSδ). The pieces within the same piece-set correspond to slices in the same

GDG block, and these pieces are ordered (as indicated by the directed edges between

them) following the transaction order in the batch log.

We say that a piece p is dependent on another piece p′ (or p′ is a dependent piece of p) in

an execution schedule ES if p is reachable from p′ in ES.

Given an execution schedule for a log batch, the replay of the schedule during recovery

must respect the dependencies among the pieces. Specifically, a piece can be executed

71

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

if all its dependent pieces have completed executions. For example, for the execution

schedule in Figure 4.6, the piece P 2
γ can be executed once its dependents (P 1

γ and P 2
β)

have completed executions, and the piece P 2
γ could be executed in parallel with both P 2

δ

and P 3
β .

Efficient Coarse-Grained Parallelism

While the above approach enables each log batch to be replayed with some degree of

fine-grained parallelism during recovery, it could incur expensive coordination overhead

when concurrent execution is enabled. This is because any transaction piece will need to

initiate the execution of possibly multiple child pieces, and such initiation essentially

requires accessing synchronization primitives for notifying concurrent threads. As an

example, the completion of piece P 1
β will result in two primitive accesses for the initiation

of P 2
β and P 1

γ , while piece P 2
β will lead to three coordination requests.

To reduce the coordination overhead involved in activating many piece executions,

PACMAN instead handles the coordination at the level of piece-sets by executing each

piece-set with a single thread2. The completion of a piece-set is accompanied with

one or more coordination requests, each of which initiates the execution of another

piece-set. By coordinating the executions at the granularity of piece-sets, the execution

output generated by each piece from PSα are delivered together, subsequently activating

the execution of PSβ with only a single coordination request. For a large batch of

transactions, this approach can improve the system performance significantly, as we shall

see in our extensive experimental study.

2As we shall see in Section 4.4.3, PACMAN can parallelize the execution of a piece-set after extracting
fine-grained intra-batch parallelism.

72

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

4.4.3 Dynamic Analysis

In this section, we explain how PACMAN could further optimize the recovery process

with a dynamic analysis of the execution schedules3. Specifically, the performance im-

provement comes from two techniques. First, by exploiting the availability of the runtime

procedure parameter values, PACMAN enables further intra-batch parallel executions.

Second, by applying a pipelined execution optimization, PACMAN enables inter-batch

parallel executions where different log batches are replayed in parallel.

Fine-Grained Intra-Batch Parallelism

Based on the discussion in Section 4.4.2, the transaction pieces within each piece-set will

be executed following the transaction order in the log batch, and the operations within

each piece will also be executed serially. As an example, consider the execution of the

the piece-set PSβ in Figure 4.6, where the three pieces in it are instantiated from the

procedure slices T2 and D1 as shown in Figure 4.7. The transaction pieces in PSβ will

be executed serially in the order P 1
β , P 2

β , and P 3
β ; and within a piece, for instance piece

P 1
β (which corresponds to slice T2), the four operations inside will also be executed

serially. Such conservative serial executions are indeed inevitable if we are relying solely

on the static analysis of the stored procedures.

However, given that the procedure/piece parameter values are actually available at

runtime from both the log entries as well as the from those piece-sets that have already

been replayed, PACMAN exploits such runtime information to further parallelize the

execution of piece-sets. Specifically, since the read and write sets of each transaction

piece could be identified from the piece’s input arguments at replay time, two operations

in the same piece-set can be executed in parallel if they fall into different key spaces (i.e.,

the two operations are not accessing the same tuple) and there is no flow dependency

between these operations. Similarly, two pieces in a piece-set can be executed in parallel

if their operations are not accessing any common tuple and there is no flow dependency

3 The analysis is dynamic in the sense that it utilizes the runtime log record information in contrast to
the static predefined stored procedure information used by static analysis.

73

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PROCEDURE_SLICE T2(src, dst, amount){

if(dst != “NULL”){

srcVal<-read(Current, src, Value)

write(Current, src, Value, srcVal-amount)

dstVal<-read(Current, dst, Value)

write(Current, dst, Value, dstVal+amount)

}

}

PROCEDURE_SLICE D1(name, amount){

tmp<-read(Current, name, Value)

write(Current, name, Value, tmp+amount)

}

Amy Bob Carrie
PROCEDURERR _SLICE D1(name, amount){

tmp<-read(Current, name, Value)

write(Current, name, Value, tmp+amount)

}

PROCEDURERR _SLICE T2(src, dst, amount){

if(dst != “NULL”){

srcVal<-read(Current, src, Value)

write(Current, src, Value, srcVal-amount)

dstVal<-read(Current, dst, Value)

write(Current, dst, Value, dstVal+amount)

}

}

Procedure slices

Key spaces

:

:

:

Parameter values for piece-set

Figure 4.7: Execution of piece-set PSβ containing three transaction pieces.

between the piece-sets.

Continuing with our example of the execution of the piece-set PSβ in Figure 4.7, the

tuples accessed by each operation in these pieces can be identified by checking the

input arguments. For example, the argument Amy in the piece P 1
β identifies the accessed

tuple for the first two operations listed in slice T2, while Bob identifies the accessed

tuple for the remaining two operations in T2. Similarly, observe that the tuple being

accessed by the operations in P 2
β is determined by the argument Bob; and the tuples

being accessed by the operations in P 3
β are determined by the arguments Amy and

Carrie. Figure 4.8 illustrates the tuples accessed by the operations in the execution of

PSβ; the flow dependencies shown are known from the static analysis. Clearly, since

the two tuples (with keys Amy and Bob) accessed by the two pairs of operations in

P 1
β (corresponding to slice T2) are distinct and there is no flow dependency between

these pairs of operations, these two pairs of operations can be safely executed in parallel

without any coordination. By a similar argument, the two pieces P 2
β and P 3

β can be

executed in parallel once the piece P 1
β has completed execution. It is important that the

execution of P 1
β be completed before starting P 2

β and P 3
β as the operations in P 1

β conflict

with those in each of P 2
β and P 3

β .

Observe that the flow dependencies shown for the execution of PSβ in Figure 4.8

are due to what have been referred to as read-modify-write access patterns [TZK+13].

This access pattern involves two operations: the first operation reads a row and the

74

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Amy

Bob

Carrie

1st piece 2nd piece 3rd piece

Figure 4.8: Exploiting runtime information to identify accessed tuples in the execution of
piece-set PSβ . The flow dependencies (depicted by curved arrows) between operations
are known from static analysis.

second operation updates the row read by the first operation. As illustrated by the

above discussion, if the read-modify-write patterns access different tuples, then the flow

dependencies among these operations would not hinder their parallel executions.

Yet another commonly seen access pattern is what we call foreign-key access pattern.

In a foreign-key pattern, an operation reads a row r1 from a table and then writes a

related row r2 in another table, where r1 (or r2) has a foreign key that refers to r2 (or

r1). Line 2 and Lines 4-5 in Figure 4.2 share this pattern4, as the specific rows to be

accessed in tables Customer and Current can be determined by src, meaning that

these operations actually belong to the same key space.

Both the read-modify-write and foreign-key access patterns are common in real-world

applications. In our analysis of fifteen well-known OLTP benchmarks [olt], we observe

that all the existing flow dependencies in these benchmarks are due to these two patterns.

Moreover, our extensive experimental studies have also confirmed this observation. The

prevalence of these two patterns indicates the potential for parallel operation executions.

Inter-Batch Parallelism

So far, our focus has been on intra-batch parallelism to optimize the performance of

executing an individual log batch schedule. However, a DBMS usually need to recover

tens of thousands of log batches during the entire log recovery phase, as it is difficult to

4 This example is actually more sophisticated because Line 2 and Lines 4-5 fall into different slices. But
we cannot prevent cases where operations in the same slice are flow-dependent.

75

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

(a) Synchronous execution. (b) Pipelined execution.

…

Barrier

Batch 1

Barrier

Batch 2

Batch 3

…

Batch 1

Batch 2

Batch 3

Figure 4.9: Synchronous execution vs pipelined execution for three log batches. Each
rectangle represents a piece-set in an execution schedule.

reload tens- or even hundreds-of-gigabyte of log data into DRAM at once. By extracting

purely intra-batch parallelism, the DBMS has to execute log batches serially one after

another, and we refer to this execution mode as synchronous execution. As illustrated

by the simple example in Figure 4.9(a) showing the execution of three log batches

(which happen to have the same execution schedules), such a serial execution requires

synchronization barriers to coordinate the thread executions. To enable inter-batch

parallelism, PACMAN supports a pipelined execution model that enables a log batch to

begin being replayed without having to wait for the replay of the preceding log batch to

be entirely completed. Specifically, a piece-set P associated with a log batch B could

start execution once its dependent piece-sets (w.r.t. B) and any piece-set in the same

block as P associated with its preceding log batch have completed.

4.4.4 Recovery Runtime

PACMAN re-executes transactions as a pipeline of order-preserving data-flows [WT15],

which is facilitated by the combination of the static and dynamic analyses described

above. Given the global dependency graph (GDG) generated at static-analysis stage,

PACMAN estimates the workload distributions over the piece-sets of each procedure block

by counting the number of pieces at log file reloading time. Based on this distribution,

PACMAN assigns a fixed number of CPU cores in the machine to each block. When a

76

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

DRAM

Core1 Core2 Core5Core4Core3

Log batch

Block

Block

Block Block

Figure 4.10: Recovery runtime of PACMAN. The workload distribution over the piece-
sets of each block (Bα, Bβ , Bγ , and Bδ) in the GDG is 20%, 40%, 20%, and 20%.

log batch is reloaded to main memory, PACMAN generates an execution schedule based

on the GDG, where the instantiated piece-sets are one-to-one mapped to the blocks

in the GDG (see Section 4.4.2). PACMAN thus can process each piece-set using the

cores assigned to the corresponding block, hence extracting coarse-grained recovery

parallelism. To enable finer-grained parallelism for recovery, PACMAN further dispatches

operations inside a piece-set into different cores by exploiting the availability of the

runtime parameter values (see Section 4.4.3). This scheme allows PACMAN to fully

utilize computation resources for processing a single log batch. PACMAN also exploits

parallelisms across multiple log batches, and this is achieved by pipelining the processing

of different execution schedules (Section 4.4.3).

Figure 4.10 gives a concrete example of how PACMAN performs database recovery for

an application containing the Transfer and Deposit procedures. By estimating the

workload distribution at log file reloading time, PACMAN assigns different number of

cores to each block. When processing a log batch, PACMAN constructs an execution

schedule and splits the log batch into four piece-sets, namely PSα, PSβ , PSγ , and PSδ.

77

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

For a certain piece-set, for instance PSβ , PACMAN processes it using the two cores

assigned to block Bβ . The operations within PSβ are dispatched to these two cores

using dynamic analysis. PACMAN finishes processing this log batch once all the four

piece-sets have been recovered. PACMAN’s pipelined execution model further allows a

log batch to be processed even if its preceding log batch is still under execution.

4.4.5 Ad-Hoc Transactions

PACMAN is designed for main-memory DBMSs that adopt command logging scheme for

preserving database durability. A known drawback of this logging scheme is that the exe-

cution behavior of a transaction containing nondeterministic operations (e.g., SELECT *

FROM FOO LIMIT 10) cannot be precisely captured [MWMS14b]. Also, command

logging does not naturally support transactions that are not issued from stored procedures.

We refer to these transactions as ad-hoc transactions. To support these transactions, a

DBMS must additionally support conventional tuple-level logical logging to record every

row-level modification of a transaction [MWMS14b].

The co-existence of both transaction-level and tuple-level logs calls for a unified re-

execution model that ensures the generality of our proposed recovery mechanism. PAC-

MAN solves this problem by treating the replay of a transaction that is persisted using

logical logging as the processing of a write-only transaction. With the full knowledge

of a transaction’s write set, high degree of parallelism is easily extracted, as each write

operation can be dispatched to the corresponding piece-subset of a certain block through

dynamic analysis described in Section 4.4.3. Note that the replay of the tuple-level logs

produced by ad-hoc transactions must still follow the strict re-execution order captured

in the log batches. As such, PACMAN’s solution enables the unification of recovery for

transaction-level logging and tuple-level logging.

One extreme case for PACMAN is that all the transactions processed by the DBMS are

ad-hoc transactions. In this case, PACMAN works essentially the same as a pure logical

log recovery scheme. However, compared to existing solution [ZTKL14a], PACMAN

does not need to acquire any latch during the log replay, and hence, when multiple threads

78

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

are utilized, it yields much higher performance than existing tuple-level log recovery

schemes that employ latches during recovery. This is confirmed by the experiment results

shown in Section 4.7.

4.5 Discussion

While PACMAN provides performance benefits for transaction-level logging-and-recovery

mechanisms, it has several limitations.

Foremost is that PACMAN relies on the use of stored procedures. Despite the fact

that most DBMSs provide support for stored procedures, many application developers

still prefer using dynamic SQL to query databases for reducing the coding complexity.

Although this limitation can restrict the use of PACMAN, an increasing number of

performance-critical applications such as on-line trading and Internet-of-Things (IoT)

processing have already adopted stored procedures to avoid the round-trip communication

cost. PACMAN is applicable for these scenarios without any modifications.

Second, PACMAN’s static analysis requires the stored procedures to be deterministic

queries with read and write sets that can be easily computed. Furthermore, it remains a

challenging problem for PACMAN to support nested transactions or transactions contain-

ing complex logic. As mentioned in Section 4.4.5, to address this problem, a DBMS has

to resort to conventional tuple-level logging for persisting every row-level modification

of a transaction.

4.6 Implementation

In this section, we describe the implementation details of the logging-and-recovery frame-

work adopted in Peloton. Our implementation faithfully follows that of SiloR [ZTKL14a],

a main-memory DBMS that is optimized for fast durability. We discuss some possible

optimization techniques at the end of this section.

79

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

4.6.1 Logging

The DBMS spawns a collection of worker threads for processing transactions and a

collection of logger threads for persisting logs. Worker threads are divided into multiple

sub-groups, each of which is mapped to a single logger thread.

To minimize the logging overhead brought by frequent disk accesses, the DBMS adopts

group commit scheme and persists logs in units of epochs. This requires each logger

thread to pack together all its transaction logs generated in a certain epoch before flushing

them into the secondary storage. To limit the file size and facilitate log recovery, a logger

thread truncates its corresponding log sequence into a series of finite-size log batches,

and each batch contains log entries generated in multiple epochs. The DBMS stores

different log batches in different log files, and this mechanism simplifies the process of

locating log entries during log recovery.

Each logger thread in the DBMS works independently, and this requires us to create a

new thread, called pepoch thread, to continuously detect the slowest progress of these

logger threads. If all the loggers have finished persisting epoch i, then the pepoch thread

writes the number i into a file named pepoch.log and notifies all the workers that

query results generated for any transaction before epoch i + 1 can be returned to the

clients.

and the batch size to 100 epochs.

4.6.2 Recovery

The DBMS starts log recovery by first reading the latest persisted epoch ID maintained in

the file pepoch.log. After obtaining the epoch ID, the DBMS reloads the correspond-

ing log files and replays the persisted log entries. For tuple-level logging mechanisms,

including physical logging and logical logging, the DBMS replays the log files in the

reverse order than they were written. This mechanism minimizes the overhead brought

by data copy. However, for transaction-level logging mechanism, or command logging,

the DBMS has to replay transaction logs following the transaction commitment order, as

80

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

described in this chapter.

4.6.3 Possible Optimizations

Existing works have proposed several mechanisms for optimizing the performance of

logging-and-recovery mechanism in DBMSs. However, these optimizations may not be

suitable for main-memory DBMSs.

A widely used optimization mechanism in disk-based DBMSs is log compression [DKO+84,

LE93], which aims at minimizing the log size that is dumped to the disk. We did not

adopt this mechanism, as SiloR’s experiments have shown that compression can degrade

the logging performance in main-memory DBMSs [ZTKL14a]. Some DBMSs adopt

delta logging [?] or differential logging [?] to persist only the updated columns of the

tuples for a transaction. While reducing the log size, these mechanisms are specifically

designed for multi-version DBMSs. We did not adopt these optimization schemes, as

our goal is to provide a generalized logging mechanism for both single-version and

multi-version main-memory DBMSs. Kim et al. [KWRP16] implemented a latch-free

scheme to achieve scalable centralized logging in a main-memory DBMS called Er-

mia. Their mechanism is designed for DBMSs that execute transactions at snapshot

isolation level. We keep using SiloR’s design as Peloton provides full serializability

for transaction processing. Hekaton [DFI+13]’s logging implementation is very similar

to ours, and it also avoids write-ahead logging and adopts group commit to minimize

overhead from disk accesses. We have already included its optimization schemes in our

implementation.

4.7 Evaluation

In this section, we evaluate the effectiveness of PACMAN, by seeking to answer the

following key questions:

1. Does PACMAN incur a significant logging overhead for transaction processing?

81

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

2. Can PACMAN achieve a high degree of parallelism during failure recovery?

3. How does each proposed mechanism contribute to the performance of PACMAN?

We implemented PACMAN in Peloton, a fully fledged main-memory DBMS optimized

for high performance transaction processing. Peloton uses a B-tree style data struc-

ture for database indexes, and it adopts multi-versioning for higher level of concur-

rency [WAL+17]. In addition to PACMAN, we also implemented the state-of-the-art tuple-

level (both physical and logical) and transaction-level logging-and-recovery schemes in

Peloton. In our implementation, we have optimized the tuple-level logging-and-recovery

schemes by leveraging multi-versioning. However, PACMAN does not exploit any char-

acteristics of multi-versioning, as the design of PACMAN makes no assumption about the

data layout, and it is general enough to be directly applicable for single-version DBMSs.

We present the implementation details in Section 4.6.

We performed all the experiments on a single machine running Ubuntu 14.04 with four

10-core Intel Xeon Processor E7-4820 clocked at 1.9 GHz, yielding a total of 40 physical

cores. Each core owns a private 32 KB L1 cache and a private 256 KB L2 cache. Every

10 cores share a 25 MB L3 cache and a 32 GB local DRAM. The machine has two 512

GB SSDs with maximum sequential read and sequential write throughput of 550 and

520 MB/s respectively.

Throughout our experiments, we evaluated the DBMS performance using two well-

known benchmarks [DPCCM13], namely, TPC-C and Smallbank. Except for Figure 4.11a,

which reports the logging performance using a single SSD, all the other experiment

results presented in this section adopt two SSDs, each assigned with a single logging

thread and a single checkpointing thread [ZTKL14a].

4.7.1 Logging

In this section, we investigate how different logging schemes influence the performance

of transaction processing. We first measure the runtime overhead incurred by different

logging schemes, and then evaluate how ad-hoc transactions affect the performance of

82

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PL LL CL OFF

0

50

100

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

0 150 300 450 600
Elapsed time (s)

0

200

400

L
a

te
n

c
y
 (

m
s
)

(a) With one SSD.

0

50

100

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

0 150 300 450 600
Elapsed time (s)

0

20

40

L
a

te
n

c
y
 (

m
s
)

(b) With two SSDs.

Figure 4.11: Throughput and latency comparisons during transaction processing. PL,
LL, and CL stand for physical logging, logical logging, and command logging, respec-
tively.

transaction-level logging scheme. Our experiment results demonstrate the effectiveness

of the transaction-level logging scheme.

Logging Overhead

We begin our experiments by evaluating the runtime overhead incurred by each logging

scheme when processing transactions in the TPC-C benchmark. Similar trends were

observed for the Smallbank benchmark. We set the number of warehouses to 200 and

the database size is approximately 20 GB5. Due to the memory limit of our experiment

machine, we disabled the insert operations in the original benchmark so that the database

size will not grow without bound. We configure Peloton to use 32 threads for transaction

executions, 2 threads for logging, and 2 threads for checkpointing. We further configure

Peloton to perform checkpointing every 200 seconds.

Figure 4.11 shows the throughput and the latency of the DBMS for the TPC-C benchmark

a 10-minute duration. Intervals during which the checkpointing threads are running

are shown in gray. With both logging and checkpointing disabled (denoted as OFF),

the DBMS achieves a stable transaction processing throughput of around 95 K tps.

5 Note that the database size measures only the storage space for tuples; the total storage space occupied
by the tuples and other auxiliary structures (e.g., indexes, lock tables) is about 70 GB.

83

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Throughput (K tps) Log size (GB/min) Log size ratio

PL LL CL PL LL CL PL/CL LL/CL

TPC-C 71 74 93 13.7 12.9 1.2 11.4 10.8

Smallbank 503 564 595 1.6 1.2 1.3 1.23 0.92

Table 4.1: Log size comparison.

However, the first 100-second trace in Figure 4.11a depicts that, using one SSD, the

throughput of the DBMS can drop by ∼25% when both checkpointing and tuple-level

logging, namely physical logging (denoted as PL) and logical logging (denoted as LL),

are enabled. When the DBMS finished performing checkpointing, the throughput rises

to around 76 K tps (see the throughput of LL from 100 to 200 seconds), but this number

is still 20% lower than the case where recovery schemes in the DBMS are fully disabled.

Compared to tuple-level logging schemes, the runtime overhead incurred by transaction-

level logging, or command logging (denoted as CL), is negligible. Specifically, the

throughput reduction caused by CL is under 6% even when checkpointing threads were

running.

Tuple-level logging schemes also caused a significant increase in transaction latency.

As Figure 4.11a shows, there are high latency spikes when checkpointing threads were

running. In the worst case, the latency can go beyond 300 milliseconds, which is

intolerable for modern OLTP applications. To mitigate this problem, a practical solution

is to equip the machine with more storage devices.

Figure 4.11b shows the transaction throughput and latency achieved when persisting

checkpoints and logs to two separate SSDs. The result shows that adding more SSDs can

effectively minimize the drop in throughput and significantly reduce the latency of tuple-

level logging. However, tuple-level logging still incurs ∼20% of throughput degradation,

and its latency is at least twice higher than that of transaction-level logging. These

results demonstrate while the performance of tuple-level logging could be improved

with additional storage devices, transaction-level logging still outperforms tuple-level

logging.

84

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Logging Only Logging + Checkpointing

0 0.2 0.4 0.6 0.8 1
Percentage of ad-hoc transactions (X100%)

0

20

40

60

80

100

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Throughput.

0 0.2 0.4 0.6 0.8 1
Percentage of ad-hoc transactions (X100%)

0

6

12

18

24

30

L
a

te
n

c
y
 (

m
s
)

(b) Latency.

Figure 4.12: Logging with ad-hoc transactions.

The major factor that causes the results shown above is that tuple-level logging schemes

usually generate much more log records than transaction-level logging, and the SSD

bandwidth can be easily saturated when supporting high throughput transaction process-

ing. As shown in Table 4.1, the log size generated by logical logging in the TPC-C

benchmark can be 10.8X larger than that generated by command logging. Physical

logging yields an even larger log size because it must record the locations of the old and

new versions of every modified tuple. In the Smallbank benchmark, while the log size

generated by the different logging schemes are similar, command logging still yields

comparatively better performance than the other schemes. This is because log data

serialization in physical and logical logging schemes requires the DBMS to iterate a

transaction’s write set and serialize every attribute of each modified tuple into contiguous

memory space. This process leads to higher overhead than that in command logging.

w/ checkpoint w/o checkpoint

PL LL CL PL LL CL

1 SSD 352 MB/s 347 MB/s 250 MB/s 274 MB/s 252 MB/s 34 MB/s

2 SSDs 468 MB/s 460 MB/s 246 MB/s 280 MB/s 252 MB/s 34 MB/s

Table 4.2: Overall SSD bandwidth.

In this section, we measure how SSD bandwidth and latency can affect the performance

of different logging schemes reported in Figure 4.11.

85

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

w/ fsync w/o fsync

PL LL CL PL LL CL

1 SSD 38 ms 33 ms 14 ms 10 ms 10 ms 7 ms

2 SSDs 25 ms 24 ms 11 ms 10 ms 10 ms 7 ms

Table 4.3: Average transaction latency.

Table 4.2 shows that, using one SSD, tuple-level logging (including PL and LL) generates

approximately 350 MB/s and 260 MB/s log data with and without checkpointing threads,

respectively. The throughput is increased to 460 MB/s when persisting data to two SSDs

with checkpointing enabled. Correspondingly, we observed in Figure 4.11 that adding

one more SSDs can greatly improve the performance of tuple-level logging in terms

of both throughput and latency. These results altogether indicate that the throughput

drops and latency spikes observed in the experiments were due to the limitation of

SSD bandwidth. Transaction-level logging’s performance is not influenced by the SSD

bandwidth, because it only generates small amounts of data. This is essentially a major

benefit of transaction-level logging.

To analyze the effect of SSD latency, we compare the average transaction latencies for

two settings: (1) when fsync is used to flush the log buffers and (2) when fsync

is not used at all. Table 4.3 shows this comparison with checkpointing disabled. The

experiment results show that invoking fsync operation can result in much higher

latency for tuple-level logging (i.e., PL and LL) compared to transaction-level logging

(i.e., CL), and the latencies achieved by tuple-level logging can be drastically reduced

when committing transactions without invoking fsync operation. Considering that the

log size generated by tuple-level logging is ∼10X larger than that of transaction-level

logging, these results altogether indicate that fsync is a real bottleneck for DBMS

logging, and its overhead is exacerbated when persisting larger amounts of data.

86

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Ad-Hoc Transactions

As discussed in Section 4.4.5, the logging of ad-hoc transactions incurs additional

overhead as the DBMS needs to log row-level modifications. In this section, we evaluate

the logging overhead for ad-hoc transactions using the TPC-C benchmark. Similar trends

were observed for Smallbank benchmark. In our experiment, we randomly tag some

transactions as ad-hoc transactions. As shown in Figure 4.12a, the transaction throughput

achieved by the DBMS drops almost linearly with the increase of the percentage of

ad-hoc transactions. Figure 4.12b further shows that the transaction latency increases

significantly with the increase in percentage of ad-hoc transactions especially when

checkpointing is performed along with logging. When 100% of the transactions are ad-

hoc, the performance degrades significantly as the DBMS essentially ends up performing

pure logical logging. Based on these results, we confirm that the overhead incurred by

command logging is no higher than that incurred by logical logging.

4.7.2 Recovery

This section evaluates the performance of PACMAN for database recovery. Our evaluation

covers the following schemes:

• PLR: This is the physical log recovery scheme that is widely implemented in

conventional disk-based DBMSs. It first reloads and replays the logs to restore

tables with committed updates using multiple threads. After that, it rebuilds all the

indexes in parallel. It adopts last-writer-wins rule to reduce log recovery time. A

recovery thread must first acquire a latch on any tuple that is to be modified. The

recovered database state is multi-versioned.

• LLR: This is the state-of-the-art logical log recovery scheme proposed in SiloR [ZTKL14a].

It reconstructs the lost database records and indexes at the same time. While the

original scheme was designed for single-version DBMSs, we have optimized this

scheme by exploiting multi-versioning to enable two recovery threads to restore

different versions of the same tuple in parallel. To ensure that all new tuple ver-

87

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

sions are appended correctly to the appropriate version chains, latches are acquired

by the recovery threads on the tuples being modified. The recovered database state

is multi-versioned.

• LLR-P: This is the parallel logical log recovery scheme adapted from PACMAN

(see Section 4.4.5). It treats the restoration of each transaction log entry as the

replay of a write-only transaction. During the log replay, it shuffles the write

operations according to the table ID and primary key. After that, it reinstalls these

operations in a latch-free manner. The recovered database state is single-versioned.

• CLR: This is the conventional approach for command log recovery. It reloads log

files into memory in parallel and then re-executes the lost committed transactions

in sequence using a single thread. The recovered database state is single-versioned.

• CLR-P: This is the parallel command log recovery scheme (PACMAN) described

in this chapter. The recovered database state is single-versioned.

The entire database recovery process operates in two stages: (1) checkpoint recovery,

which restores the database to the transactionally-consistent state at the last checkpoint;

and (2) log recovery, which reinstalls the effects made by all the lost committed transac-

tions. We study these two stages separately, and then evaluate the overall performance of

the entire database recovery process. Finally, we study the effect of ad-hoc transactions.

Checkpoint Recovery

We first examine the performance of each scheme’s checkpoint recovery stage. We

use the TPC-C benchmark and require the DBMS to recover a 20 GB database state.

Figure 4.13a compares the checkpoint file reloading time of each recovery scheme. The

result shows that different recovery schemes require a similar time duration for reloading

checkpoint files from the underlying storage, and the reloading speed can easily reach

the peak bandwidth of the two underlying SSDs, which is ∼1 GB/s. However, the results

in Figure 4.13b indicate that PLR’s checkpointing scheme requires much less time for

completing the entire checkpoint recovery phase. This is because this scheme only

88

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PLR LLR LLR-P CLR CLR-P

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

8

16

24

32

40

T
im

e
 (

s
)

(a) Pure checkpoint file reloading.

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

140

280

420

560

700

T
im

e
 (

s
)

(b) Overall time duration.

Figure 4.13: Performance of checkpoint recovery.

restores the database records during checkpoint recovery, and the reconstruction of all

the database indexes is performed during the subsequent log recovery phase. All the

other checkpointing schemes, however, must perform on-line index reconstruction, as

their subsequent log recovery phase needs to use the indexes for tuple retrievals. LLR’s

checkpoint recovery scheme also perform slightly faster than the rest ones, as it can

leverage multi-versioning to increase the recovery concurrency.

Log Recovery

We now compare each scheme’s log recovery stage using the TPC-C benchmark. The

recovery process was triggered by crashing the DBMS after the benchmark has been

executed for 5 minutes.

Figure 4.14a shows the recovery time of each log recovery scheme. Compared to the

tuple-level log recovery schemes (i.e., PLR, LLR, and LLR-P), the transaction-level log

recovery schemes (i.e., CLR and CLR-P) require much less time for log reloading. This

is because transaction-level logging can generate much smaller log files compared to

tuple-level logging, especially when processing write-intensive workloads (like TPC-C).

Figure 4.14b also demonstrates the significant performance improvement of CLR-P

over CLR. As CLR utilizes only a single thread for log replay, CLR took over 4,200

seconds (70 minutes) to complete the log recovery. In contrast, by utilizing multiple

89

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

PLR LLR LLR-P CLR CLR-P

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

24

48

72

96

120

T
im

e
 (

s
)

(a) Pure log file reloading.

3600

4200

4800

5400

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

600

1200

1800

T
im

e
 (

s
)

(b) Overall time duration.

Figure 4.14: Performance of log recovery.

threads for recovery, our proposed CLR-P was able to outperform CLR by a factor of

18. Observe that the performance of CLR-P improves significantly with the number of

recovery threads. As CLR-P already schedules the transaction re-execution order (using

both static and dynamic analyses), CLR-P does not require latching during recovery and

therefore is not hampered by the latch synchronization overhead inherent in CLR.

Observe that for both PLR and LLR, their recovery times improve with the number of

recovery threads up to 20 threads and beyond that point, their recovery times increase

with the number of recovery threads. This is because the recovery threads in both PLR

and LLR (which follow SiloR’s design) require latches on tuples to be modified for

recovery correctness, and the synchronization overhead of using latches start to degrade

the overall performance beyond 20 recovery threads.

To try to quantify the latching overhead incurred by PLR and LLR, we removed the

latch acquisition operations in both of these recovery schemes and then measured their

recovery performance. Of course, without the use of latches, both PLR and LLR could

produce inconsistent database states after recovery; however, the attained performance

measurements would essentially indicate the peak performance achievable by PLR and

LLR. As shown in Figure 4.15, with the latch acquisition disabled, the recovery times

of both PLR and LLR drop significantly with the increase in the number of recovery

threads. Observe that the time reduction after 12 threads is not quite significant. This is

90

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

With Latch Without Latch

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

260

520

780

1040

1300

T
im

e
 (

s
)

(a) PLR.

1 4 8 12 16 20 24 28 32 36 40

Number of threads

0

180

360

540

720

900

T
im

e
 (

s
)

(b) LLR.

Figure 4.15: Latching Bottleneck in tuple-level log recovery schemes.

because (1) the scalability of the log reloading phase is bounded by the maximum read

throughput of the underlying SSD storage; and (2) the scalability of the log replay phase

is also constrained by the performance of the concurrent database indexes. With 20

recovery threads, the recovery times of PLR and LLR were reduced to the minimum at

around 750 and 270 seconds respectively. However, scaling these two schemes towards

40 threads significantly increases the recovery time to over 1000 and 700 seconds,

respectively. These results show the inefficiency of the state-of-the-art tuple-level log

recovery schemes.

Overall Performance

This section evaluates the overall performance of the recovery schemes using 40 recovery

threads. As before, the recovery schemes were triggered after 5 minutes of transaction

processing.

As shown in Figure 4.16, CLR performed the worst in both benchmarks as CLR cannot

leverage multi-threading for reducing log recovery time. Our proposed scheme, LLR-P,

achieved the best performance. This is due to two main reasons. First, unlike CLR,

LLR-P is able to exploit multiple recovery threads for efficient recovery. Second, LLR-P

schedules the transaction re-execution order beforehand and it does not require any

latching thereby avoiding the synchronization overhead that is incurred by both PLR and

91

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Checkpoint Recovery Log Recovery

PLR LLR LLR-P CLR CLR-P
0

900

1800

2700

3600

4500

T
im

e
 (

s
)

(a) TPC-C.

PLR LLR LLR-P CLR CLR-P
0

600

1200

1800

2400

3000

T
im

e
 (

s
)

(b) Smallbank.

Figure 4.16: Overall performance of database recovery.

LLR schemes. We note that CLR-P consumes more time than LLR-P for recovering the

database. This is because CLR-P has to re-execute all the operations (including both

read and write) in a transaction, whereas LLR-P only reinstalls modifications recorded

in the log files. For all the compared schemes, the checkpoint recovery time is almost

negligible, as this phase is easily parallelized.

Ad-Hoc Transactions

We further measure how the presence of ad-hoc transactions influence PACMAN’s perfor-

mance in database recovery. We use the same configurations as the previous experiments,

and mix the workload with certain percentage of ad-hoc transactions. Figure 4.17 shows

the results. By varying the percentage of ad-hoc transactions from 0% to 100%, the

recovery time of PACMAN drops smoothly. When the percentage of ad-hoc transac-

tions is increased to 100%, this result essentially show the performance of LLR-P. As

recovering command logs requires the DBMS to perform all the read operations in the

stored procedure, it takes more time compared to pure logical log recovery. This results

confirmed the efficiency of PACMAN’s support of ad-hoc transactions.

The experiment results reported in this section confirmed that PACMAN requires a much

lower recovery time for restoring lost database states compared with the state-of-the-art

recovery schemes, even in the existence of ad-hoc transactions.

92

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Checkpoint Recovery Log Recovery

0 0.2 0.4 0.6 0.8 1
Percentage of ad-hoc transactions (X100%)

0

90

180

270

360

450

T
im

e
 (

s
)

(a) TPC-C.

0 0.2 0.4 0.6 0.8 1
Percentage of ad-hoc transactions (X100%)

0

28

56

84

112

140

T
im

e
 (

s
)

(b) Smallbank.

Figure 4.17: Database recovery with ad-hoc transactions.

4.7.3 Performance Analysis

In this section, we analyze the effectiveness of each of the proposed mechanisms in PAC-

MAN using the TPC-C benchmark. In particular, we measure the recovery performance

achieved by PACMAN’s static analysis and dynamic analysis, and then investigate the

potential performance bottlenecks in PACMAN.

The results reported in this section are based on running the benchmark for a duration of

five minutes and then triggering a database crash to start the recovery process. As both

static and dynamic analyses are designed for log recovery, we omit checkpoint recovery

in this section’s experiments.

Static Analysis

As the static analysis in PACMAN relies on decomposing stored procedures into slices to

enable execution parallelism, we compare the effectiveness of PACMAN’s decomposition

technique against a baseline technique that is adapted from the well-known transaction

chopping technique [SLSV95].

Figure 4.18 compares the log recovery performance achieved by PACMAN’s static

analysis and the transaction chopping-based scheme. For this experiment, the dynamic

analysis phase was disabled to focus on the comparison between the two competing static

93

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Static Analysis in PACMAN Transaction Chopping

1 2 3 4 5 6 7 8

Number of threads

0

1000

2000

3000

4000

5000

T
im

e
 (

s
)

Figure 4.18: Effectiveness of static analysis.

Pure Static Analysis Synchronous Execution Pipelined Execution

1 8 16 24 32 40

Number of threads

0

1000

2000

3000

4000

5000

T
im

e
 (

s
)

Figure 4.19: Effectiveness of dynamic analysis.

analysis techniques. The results show that, as the number of threads increases from 1 to

3, the recovery time achieved by PACMAN’s static analysis decreases from 4500 seconds

to ∼2000 seconds. But beyond this point, the recovery time stops decreasing and there

is no further performance gain brought from the increased thread count. This is because

PACMAN’s static analysis extracts only coarse-grained parallelism for log recovery, and

dynamic analysis needs to be incorporated to fully exploit the multi-thread execution.

The same figure also shows the recovery time required by transaction chopping is always

longer than that required by PACMAN’s static analysis. This is because the decomposition

obtained from PACMAN is finer-grained than that from transaction chopping.

94

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Dynamic Analysis

This section examines the effectiveness of the dynamic analysis in PACMAN. We analyze

the benefits of intra- and inter-batch parallelism by comparing three techniques: (1)

using only static analysis techniques (without applying any techniques from dynamic

analysis), (2) using techniques from both static analysis and intra-batch parallelism

techniques (i.e., synchronous execution), and (3) using all the techniques from static

and dynamic analyses (i.e., pipelined execution). Figure 4.19 shows that, by using

synchronous execution, PACMAN yields over 4 times lower recovery time compared to

that achieved by pure static analysis with 40 threads enabled. The performance is further

improved by exploiting inter-batch parallelism. Specifically, with pipelined execution,

the recovery time of PACMAN drops to less than 300 seconds when utilizing 40 threads.

This result confirms that both the intra- and inter-batch parallelism extracted in PACMAN

can help improve the system scalability and hence reduce recovery time.

Time Breakdown

Having understood how each of the proposed mechanisms contributes to the system

performance, we further investigate the performance bottleneck of PACMAN. The

bottleneck can potentially come from three sources. First, the DBMS needs to load the

log files from the underlying storage and deserialize the logs to the main-memory data

structures. Second, the dynamic analysis in PACMAN requires that the parameter values

in each log batch be analyzed for deriving intra-batch parallelism, possibly blocking

the subsequent tasks. Third, the scheduling of multiple threads requires each thread

to access a centralized data structure, potentially resulting in intensive data races. We

break down the recovery time of PACMAN and show the result in Figure 4.20. By scaling

PACMAN to 40 threads, thread scheduling becomes the major bottleneck, occupying

around 30% of the total recovery time. In contrast, log data loading and dynamic analysis

are very lightweight, and these two processes do not lead to high overhead. Observing

the performance bottleneck in PACMAN, we argue that employing a better scheduling

mechanism can help further optimize the performance of database recovery.

95

Chapter 4. PACMAN: A Parallel Logging and Recovery Mechanism on
Multi-Cores

Useful Work Data Loading Parameter Checking Scheduling

1 8 16 24 32 40

Number of threads

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc

e
n
ta

g
e
 (

X
1
0
0
%

)

Figure 4.20: Log recovery time breakdown.

4.8 Conclusion

We have developed PACMAN, a database recovery mechanism that achieves speedy

failure recovery without introducing any costly overhead to the transaction processing.

By leveraging a combination of static and dynamic analyses, PACMAN exploits fine-

grained parallelism for replaying logs generated by coarse-grained transaction-level

logging. By performing extensive performance studies on a 40-core machine, we

confirmed that PACMAN can significantly reduce the database recovery time compared

to the state-of-the-art recovery schemes.

96

CHAPTER 5
Multi-Version Transaction Management: An

Evaluation on Multi-Cores

5.1 Introduction

In the previous chapter, we presented the designs of a robust concurrency control protocol

and a parallel logging and recovery scheme that allow multi-core main-memory DBMSs

to achieve high performance in both transaction processing and failure recovery. While

these two proposed mechanisms can greatly improve the DBMS performance, to enable

the DBMS to scale towards dozens of cores, system developers also need to address

potential performance bottlenecks inherited from the overall transaction management

schemes.

Modern DBMSs usually implement multi-version concurrency control (MVCC) to

achieve higher levels of concurrency. The basic idea of MVCC is that the DBMS main-

tains multiple physical versions of each logical tuple in the database to allow operations

on the same tuple to proceed in parallel. MVCC allows read-only transactions to access

older versions of tuples without preventing read-write transactions from simultaneously

generating newer versions. Contrast this with a single-version system where transactions

always overwrite a tuple with new information whenever they update it.

Maintaining multiple versions to achieve higher concurrency is not a new idea in modern

DBMSs. The first mention of MVCC appeared in a 1979 dissertation [Ree78] and the

first implementation started in 1981 [Har] for the InterBase DBMS (now open-sourced

as Firebird). MVCC is also used in some of the most widely deployed disk-oriented

97

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

DBMSs today, including Oracle (since 1984 [orab]), Postgres (since 1985 [SR86]), and

MySQL’s InnoDB engine (since 2001). But while there are plenty of contemporaries to

these older systems that use a single-version scheme (e.g., IBM DB2, Sybase), almost

every new transactional DBMS eschews this approach in favor of MVCC. This includes

both commercial (e.g., Microsoft Hekaton [DFI+13], SAP HANA [SFL+12], Mem-

SQL [mem], NuoDB [nuo]) and academic (e.g., HYRISE [GKP+10], HyPer [NMK15])

systems.

Despite all these newer systems using MVCC, there is no one “standard” implementation

for transaction management in these systems. There are several design choices that

have different trade-offs and performance behaviors. Until now, there has not been a

comprehensive evaluation of MVCC in a modern DBMS operating environment. The last

extensive study was in the 1980s [CM86], but it used simulated workloads running in a

disk-oriented DBMS with a single CPU core. The design choices of legacy disk-oriented

DBMSs are inappropriate for in-memory DBMSs running on a machine with a large

number of CPU cores. As such, this previous work does not reflect recent trends in latch-

free [LBD+11] and serializable [FLO+05] concurrency control, as well as in-memory

storage [NMK15] and hybrid workloads [SFL+12].

In this chapter, we perform such a study for several key design decisions that may be af-

fected by the transaction management scheme in multi-version DBMSs: (1) concurrency

control protocol, (2) version storage, (3) garbage collection, and (4) index management.

For each of these topics, we describe the state-of-the-art implementations for in-memory

DBMSs and discuss their trade-offs. We also highlight the issues that prevent them from

scaling to support larger thread counts and more complex workloads. As part of this

investigation, we implemented all of the approaches in the Peloton [pel] in-memory

multi-version DBMS. This provides us with a uniform platform to compare implemen-

tations that is not encumbered by other architecture facets. We deployed Peloton on

a machine with 40 cores and evaluate it using two OLTP benchmarks. Our analysis

identifies the scenarios that stress the implementations and discuss ways to mitigate them

(if it all possible).

98

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Year Protocol Version Storage

Oracle [orab] 1984 MV2PL Delta

Postgres [pos] 1985 MV2PL/SSI Append-only (O2N)

MySQL-InnoDB [mys] 2001 MV2PL Delta

HYRISE [GKP+10] 2010 MVOCC Append-only (N2O)

Hekaton [DFI+13] 2011 MVOCC Append-only (O2N)

MemSQL [mem] 2012 MVOCC Append-only (N2O)

SAP HANA [LMM+13] 2012 MV2PL Time-travel

NuoDB [nuo] 2013 MV2PL Append-only (N2O)

HyPer [NMK15] 2015 MVOCC Delta

Garbage Collection Index Management

Oracle [orab] 1984 Tuple-level (VAC) Logical Pointers (TupleId)

Postgres [pos] 1985 Tuple-level (VAC) Physical Pointers

MySQL-InnoDB [mys] 2001 Tuple-level (VAC) Logical Pointers (PKey)

HYRISE [GKP+10] 2010 – Physical Pointers

Hekaton [DFI+13] 2011 Tuple-level (COOP) Physical Pointers

MemSQL [mem] 2012 Tuple-level (VAC) Physical Pointers

SAP HANA [LMM+13] 2012 Hybrid Logical Pointers (TupleId)

NuoDB [nuo] 2013 Tuple-level (VAC) Logical Pointers (PKey)

HyPer [NMK15] 2015 Transaction-level Logical Pointers (TupleId)

Table 5.1: Transaction management Implementations – A summary of the design
decisions made for the commercial and research multi-version DBMSs. The year
attribute for each system (except for Oracle) is when it was first released or announced.
For Oracle, it is the first year the system included MVCC. With the exception of Oracle,
MySQL, and Postgres, all of the systems assume that the primary storage location of the
database is in memory.

The remainder of this chapter is organized as follows. We begin in Section 5.2 with

an overview of existing implementations for transaction management. We then discuss

the four design decisions: concurrency control protocol (Section 5.3), version storage

(Section 5.4), garbage collection (Section 5.5), and index management (Section 5.6). We

then present our evaluation in Section 5.7 and discuss the results in Section 5.8. We

summarize the work in Section 5.9.

99

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

5.2 Background

We first provide an overview the high-level concepts of multi-versioning. We then

discuss the meta-data that the DBMS uses to track transactions and maintain versioning

information.

5.2.1 Overview

A transaction management scheme permits end-users to access a database in a multi-

programmed fashion while preserving the illusion that each of them is executing alone

on a dedicated system [BG81]. It ensures the atomicity and isolation guarantees of the

DBMS.

A multi-version DBMS uses versioning as a means to allow transactions to safely

interleave their operations. The DBMS creates multiple physical versions of a logical

database object whenever a transaction modifies that object. Contrast this with a single-

version system where transactions always overwrite the object with new information

whenever they update it. These objects can be at any granularity, but almost every

multi-version DBMS uses tuples because it provides a good balance between parallelism

versus the overhead of version tracking.

There are several advantages of a multi-version system that are relevant to modern

database applications. Foremost is that it can potentially allow for greater concurrency

than a single-version system. For example, a multi-version DBMS allows a transaction

to read an older version of an object at the same time that another transaction updates

that same object. This is important in that execute read-only queries on the database

at the same time that read-write transactions continue to update it. If the DBMS never

removes old versions, then the system can also support “time-travel” operations that

allow an application to query a consistent snapshot of the database as it existed at some

point of time in the past [BBG+95].

The above benefits have made multi-versioning the most popular choice for new DBMS

implemented in recent years. Table 5.1 provides a summary of the multi-versioning

100

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

begin-ts columns

ContentHeader

txn-id end-ts …pointer

Figure 5.1: Tuple Format – The basic layout of a physical version of a tuple.

implementations from the last three decades. But there are different ways to implement

multi-versioning in a DBMS that each creates additional computation and storage over-

head. These are design decisions are also highly dependent on each other. Thus, it is

non-trivial to discern which ones are better than others and why. This is especially true

for in-memory DBMSs where disk is no longer the main bottleneck.

In the following sections, we discuss the implementation issues and performance trade-

offs of these design decisions. We then perform a comprehensive evaluation of them

in Section 5.7. We note that while logging and recovery is another important aspect of

a DBMS’s architecture, we exclude it from our study because there is nothing about it

that is different from a single-version system and in-memory DBMS logging is already

covered elsewhere [MWMS14a, ZTKL14b, WGCT17].

5.2.2 DBMS Meta-Data

Regardless of if its implementation, there is common meta-data that a multi-version

DBMS maintains for transactions and database tuples.

Transactions: The DBMS assigns each transaction T a 32-bit unique, monotonically

increasing timestamp as its identifier (T id) when they first enter the system. The concur-

rency control protocols use this identifier to mark the tuple versions that a transaction

accesses. Some protocols also use it for the serialization order of transactions.

Tuples: As shown in Figure 5.1, each physical version contains four meta-data fields

in its header that the DBMS uses to coordinate the execution of concurrent transac-

tions (some of the concurrency control protocols discussed in the next section include

additional fields). The txn-id field serves as the version’s write lock. Every tuple

has this field set to zero when the tuple is not write-locked. Most DBMSs use a 64-bit

101

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

TUPLE HEADERS

txn-id
0
Tid
Tid

read-ts
Tid
12
0

TXN T 1

UPDATE B

READ A

2

AX
BX
BX+1

end-ts
20
30
-

begin-ts
10
15
-

(a) Timestamp Ordering

TUPLE HEADERS

txn-id
0
Tid
Tid

end-ts
20
30
-

TXN T 1

UPDATE B

2

3
begin-ts

10
15
-

AX
BX
BX+1

READ A

(b) Optimistic Concurrency Control

TUPLE HEADERS

txn-id
0
Tid
Tid

read-cnt
2
0
0

TXN T 1

UPDATE B

READ A

2

AX
BX
BX+1

end-ts
20
30
-

begin-ts
10
15
-

(c) Two-phase Locking

TUPLE HEADERS

txn-id
0
Tid
Tid

end-ts
20
30
-

TXN T 1

UPDATE B

2

begin-ts
10
15
-

AX
BX
BX+1

READ A

(d) Serializable Snapshot Isolation

Figure 5.2: Concurrency Control Protocols – Examples of how the protocols process
a transaction that executes a READ followed by an UPDATE.

txn-id so that it can use a single compare-and-swap (CaS) instruction to atomically

update the value. If a transaction T with identifier T id wants to update a tuple A, then

the DBMS checks whether A’s txn-id field is zero. If it is, then DBMS will set the

value of txn-id to T id using a CaS instruction [LBD+11, TZK+13]. Any transaction

that attempts to update A is aborted if this txn-id field is neither zero or not equal to

its T id. The next two meta-data fields are the begin-ts and end-ts timestamps that

represent the lifetime of the tuple version. Both fields are initially set to zero. The DBMS

sets a tuple’s begin-ts to INF when the transaction deletes it. The last meta-data field

is the pointer that stores the address of the neighboring (previous or next) version (if

any).

5.3 Concurrency Control Protocol

Every DBMS includes a concurrency control protocol that coordinates the execution

of concurrent transactions [BHG87]. This protocol determines (1) whether to allow a

transaction to access or modify a particular tuple version in the database at runtime,

and (2) whether to allow a transaction to commit its modifications. Although the

fundamentals of these protocols remain unchanged since the 1980s, their performance

102

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

characteristics have changed drastically in a multi-core and main-memory setting due to

the absence of disk operations [SMA+07]. As such, there are newer high-performance

variants that remove locks/latches and centralized data structures, and are optimized for

byte-addressable storage.

In this section, we describe the four core concurrency control protocols for multi-version

DBMSs. We only consider protocols that use tuple-level locking as this is sufficient to

ensure serializable execution. We omit range queries multi-versioning does not bring any

benefits to phantom prevention [EGLT76]. Existing approaches to provide serializable

transaction processing use either (1) additional locks in the index [Moh90, TZK+13] or

(2) extra validation steps when transactions commit [LBD+11].

5.3.1 Timestamp Ordering (MVTO)

The MVTO algorithm from 1979 is considered the original multi-version concurrency

control protocol [Ree78, Ree83]. The crux of this approach is to use the transactions’

identifiers (T id) to pre-compute their serialization order. In addition to the fields described

in Section 5.2.2, the version headers also contain the identifier of the last transaction that

read it (read-ts). A transaction that attempts to read or update a version whose write

lock is held by another transaction is aborted.

When transaction T invokes a read operation on logical tuple A, the DBMS searches for

a physical version where T id is in between the range of the begin-ts and end-ts

fields. As shown in Figure 5.2a, T is allowed to read version Ax if its write lock is not

held by another active transaction (i.e., value of txn-id is zero or equal to T id) because

MVTO never allows a transaction to read uncommitted versions. Upon reading Ax, the

DBMS sets Ax’s read-ts field to T id if its current value is less than T id. Otherwise,

the transaction reads an older version without updating this field.

With MVTO, a transaction always updates the latest version of a tuple. Transaction T

creates a new version Bx+1 if (1) no active transaction holds Bx’s write lock and (2) T id is

larger than Bx’s read-ts field. If these conditions are satisfied, then the DBMS creates

a new version Bx+1 and sets its txn-id to T id. When T commits, the DBMS sets Bx+1’s

103

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

begin-ts and end-ts fields to T id and INF (respectively), and Bx’s end-ts field

to T id.

5.3.2 Multi-version Optimistic Concurrency Control (MVOCC)

This next protocol is based on the optimistic concurrency control (OCC) scheme proposed

in 1981 [KR81]. The motivation behind OCC is that the DBMS assumes that transactions

are unlikely to conflict, and thus a transaction does not have to acquire locks on tuples

when it reads or updates them. This reduces the amount of time that a transaction

holds locks. There are changes to the original OCC protocol to adapt it for multi-

versioning [LBD+11]. Foremost is that the DBMS does not maintain a private workspace

for transactions, since the tuples’ versioning information already prevents transactions

from reading or updating versions that should not be visible to them.

The MVOCC protocol splits a transaction into three phases. When the transaction starts,

it is in the read phase. This is where the transaction invokes read and update operations

on the database. Like MVTO, to perform a read operation on a tuple A, the DBMS first

searches for a visible version Ax based on begin-ts and end-ts fields. T is allowed

to update version Ax if its write lock is not acquired. In a multi-version setting, if the

transaction updates version Bx, then the DBMS creates version Bx+1 with its txn-id

set to T id.

When a transaction instructs the DBMS that it wants to commit, it then enters the

validation phase. First, the DBMS assigns the transaction another timestamp (Tcommit) to

determine the serialization order of transactions. The DBMS then determines whether the

tuples in the transaction’s read set was updated by a transaction that already committed.

If the transaction passes these checks, it then enters the write phase where the DBMS

installs all the new versions and sets their begin-ts to Tcommit and end-ts to INF.

Transactions can only update the latest version of a tuple. But a transaction cannot read

a new version until the other transaction that created it commits. A transaction that reads

an outdated version will only find out that it should abort in the validation phase.

104

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

5.3.3 Two-phase Locking (MV2PL)

This protocol uses the two-phase locking (2PL) method [BHG87] to guarantee the

transaction serializability. Every transaction acquires the proper lock on the current

version of logical tuple before it is allowed to read or modify it. In a disk-based DBMS,

locks are stored separately from tuples so that they are never swapped to disk. This

separation is unnecessary in an in-memory DBMS, thus with MV2PL the locks are

embedded in the tuple headers. The tuple’s write lock is the txn-id field. For the

read lock, the DBMS uses a read-cnt field to count the number of active transactions

that have read the tuple. Although it is not necessary, the DBMS can pack txn-id

and read-cnt into contiguous 64-bit word so that the DBMS can use a single CaS to

update them at the same time.

To perform a read operation on a tuple A, the DBMS searches for a visible version by

comparing a transaction’s T id with the tuples’ begin-ts field. If it finds a valid version,

then the DBMS increments that tuple’s read-cnt field if its txn-id field is equal to

zero (meaning that no other transaction holds the write lock). Similarly, a transaction

is allowed to update a version Bx only if both read-cnt and txn-id are set to zero.

When a transaction commits, the DBMS assigns it a unique timestamp (Tcommit) that is

used to update the begin-ts field for the versions created by that transaction and then

releases all of the transaction’s locks.

The key difference among 2PL protocols is in how they handle deadlocks. Previous

research has shown that the no-wait policy [BG81] is the most scalable deadlock pre-

vention technique [YBP+14]. With this, the DBMS immediately aborts a transaction

if it is unable to acquire a lock on a tuple (as opposed to waiting to see whether the

lock is released). Since transactions never wait, the DBMS does not have to employ a

background thread to detect and break deadlocks.

105

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

5.3.4 Serializable Snapshot Isolation (SSI)

The SSI protocol avoids write-skew anomalies in snapshot isolation by dynamically

maintaining a serialization graph for detecting and aborting “dangerous structures” of

concurrent transactions [FLO+05, CRF09]. Similar with the three protocols described

above, SSI uses a transaction’s T id to search for a visible version of a tuple, and a

transaction can update a version only if its txn-id field is set to zero. But SSI also

tracks anti-dependency edges among transactions where a transaction creates a new

version whose previous version is read by another transaction. When the DBMS detects

two consecutive anti-dependency edges between transactions, it aborts one of them.

The DBMS maintains two flags for each running transaction: T inConflict and ToutConflict.

When a transaction T1 reads an older version of a tuple that has been updated by another

transaction T2, the DBMS sets both the T1outConflict flag and T2inConflict flag to true to

mark the anti-dependency relation. The DBMS aborts transaction T when T inConflict and

ToutConflict flags are both set to true.

Although SSI can increases parallelism by avoiding the consistency certification of a

transaction’s read set, it incurs high abort rate due to the false positives. To address

this problem, the serial safety net (SSN) [WJFP15] improves SSI’s performance by

reducing false aborts. SSN encodes the transaction dependency information into a

single meta-data field and validates a transaction T’s consistency by computing a low

watermark that summarizes “dangerous” transactions that committed before the T but

must be serialized after T [WJFP15]. Reducing the number of false aborts makes SSN

more amenable to workloads with read-only or read-mostly transactions.

5.3.5 Discussion

These protocols handle conflicts differently, and thus are better for some workloads

more than others. Both MVTO and MV2PL maintain additional fields in the tuple

header to track transaction’s read operations. MV2PL records reads with its read lock

for each version. Hence, a transaction performing a read/write on a tuple version will

106

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

cause another transaction to abort if it attempts to do the same thing on that version.

MVTO instead uses the read-ts field to record reads on each version. MVOCC does

not update any fields on a tuple’s version header during read/operations. This avoids

unnecessary coordination between threads, and a transaction reading one version will

not lead to an abort other transactions that update the same version. But MVOCC

requires the DBMS to examine a transaction’s read set to validate the correctness of

that transaction’s read operations. This can cause starvation of long-running read-only

transactions [KWRP16]. SSI reduces transaction aborts because it does not validate

read operations, but its anti-dependency checking scheme has additional overheads.

There are some proposals for optimizing the above protocols to improve their efficacy

for multi-version DBMSs [BRD11, LBD+11]. One approach is to allow a transaction

to speculatively read uncommitted versions created by other transactions. The trade-

off is that the protocols must track the transactions’ read dependencies to guarantee

serializable ordering. Each worker thread maintains a dependency counter of the number

of transactions that it read their uncommitted data. A transaction is allowed to commit

only when its dependency counter is zero, whereupon the DBMS traverses its dependency

list and decrements the counters for all the transactions that are waiting for it to finish.

Similarly, another optimization mechanism is to allow transactions to eagerly update

versions that are read by uncommitted transactions. This optimization also requires

the DBMS to maintain a centralized data structure to track the dependencies between

transactions. A transaction can commit only when all of the transactions that it depends

on have committed.

Both optimizations described above can reduce the number of unnecessary aborts for

some workloads, but they also suffer from cascading aborts. Moreover, we find that the

maintenance of a centralized data structure can become a major performance bottleneck,

which prevents the DBMS from scaling towards dozens of cores.

107

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Key
1001
1002

Value
AAAA
BBBB
CCCC

EEEE1002

1003

Pointer

MAIN TABLEINDEX

DDDD1002

AX
BX
CX

BX+1

BX+2

(a) Append-only (O2N)

Key
1001
1002

Value
AAAA
BBBB
CCCC

EEEE1002

1003

Pointer

MAIN TABLEINDEX

DDDD1002

AX
BX
CX

BX+1

BX+2

(b) Append-only (N2O)

Key
1001
1002

Value
AAAA
EEEE
CCCC1003

Pointer

INDEX

1002
1002

BBBB
DDDD

MAIN TABLE

TIME-TRAVEL TABLE

AX
BX+2
CX

BX
BX+1

(c) Time-travel Storage

Key
1001
1002

Value
AAAA
EEEE
CCCC1003

Pointer

INDEX

BBBB DDDD

MAIN TABLE

DELTA STORAGE

AX
BX+2
CX

BX BX+1

(d) Delta Storage

Figure 5.3: Version Storage – This diagram provides an overview of how the schemes
organize versions in different data structures and how their pointers create version
chains in an in-memory multi-version DBMS. Note that there are two variants of the
append-only scheme that differ on the ordering of the version chains.

5.4 Version Storage

Using multi-versioning scheme, the DBMS always constructs a new physical version

of a tuple when a transaction updates it. The DBMS’s version storage scheme specifies

how the system stores these versions and what information each version contains. The

DBMS uses the tuples’ pointer field to create a latch-free linked list called a version

chain. This version chain allows the DBMS to locate the desired version of a tuple that

is visible to a transaction. As we discuss below, the chain’s HEAD is either the newest

or oldest version.

We now describe these schemes in more detail. Our discussion focuses on the schemes’

trade-offs for UPDATE operations because this is where the DBMS handles versioning. A

DBMS inserts new tuples into a table without having to update other versions. Likewise,

a DBMS deletes tuples by setting a flag in the current version’s begin-ts field. In

subsequent sections, we will discuss the implications of these storage schemes on how

108

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

the DBMS performs garbage collection and how it maintains pointers in indexes.

5.4.1 Append-only Storage

In this first scheme, all of the tuple versions for a table are stored in the same storage

space. This approach is used in Postgres, as well as in-memory DBMSs like Hekaton,

NuoDB, and MemSQL. To update an existing tuple, the DBMS first acquires an empty

slot from the table for the new tuple version. It then copies the content of the current

version to the new version. Finally, it applies the modifications to the tuple in the newly

allocated version slot.

The key decision with the append-only scheme is how the DBMS orders the tuples’

version chains. Since it is not possible to maintain a latch-free doubly linked list, the

version chain only points in one direction. This ordering has implications on how often

the DBMS updates indexes whenever transactions modify tuples.

Oldest-to-Newest (O2N): With this ordering, the chain’s HEAD is the oldest extant

version of a tuple (see Figure 5.3a). This version might not be visible to any active

transaction but the DBMS has yet to reclaim it. The advantage of O2N is that the

DBMS need not update the indexes to point to a newer version of the tuple whenever

it is modified. But the DBMS potentially traverses a long version chain to find the

latest version during query processing. This is slow because of pointer chasing and it

pollutes the CPU’s caches by reading versions that are not needed. Thus, achieving good

performance with O2N is highly dependent on the effectiveness of the system’s ability

to prune old versions.

Newest-to-Oldest (N2O): The alternative is to store the newest version of the tuple as

the version chain’s HEAD (see Figure 5.3b). Since most transactions access the latest

version of a tuple, the DBMS does not have to traverse the chain. The downside, however,

is that the chain’s HEAD changes whenever a tuple is modified. The DBMS then updates

all of the table’s indexes (both primary and secondary) to point to the new version. As

we discuss in Section 5.6.1, one can avoid this problem through an indirection layer

that provides a single location that maps the tuple’s latest version to physical address.

109

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

With this setup, the indexes point to tuples’ mapping entry instead of their physical

locations. This works well for tables with many secondary indexes but increases the

storage overhead.

Another issue with append-only storage is how to deal with non-inline attributes (e.g.,

BLOBs). Consider a table that has two attributes (one integer, one BLOB). When a

transaction updates a tuple in this table, under the append-only scheme the DBMS creates

a copy of the BLOB attributes (even if the transaction did not modify it), and then the

new version will point to this copy. This is wasteful because it creates redundant copies.

To avoid this problem, one optimization is to allow the multiple physical versions of the

same tuple to point to the same non-inline data. The DBMS maintains reference counters

for this data to ensure that values are deleted only when they are no longer referenced by

any version.

5.4.2 Time-Travel Storage

The next storage scheme is similar to the append-only approach except that the older

versions are stored in a separate table. The DBMS maintain a master version of each

tuple in the main table and multiple versions of the same tuple in a separate time-travel

table. In some DBMSs, like SQL Server, the master version is the current version of the

tuple. Other systems, like SAP HANA, store the oldest version of a tuple as the master

version to provide snapshot isolation [LSP+16]. This incurs additional maintenance

costs during GC because the DBMS copies the data from the time-travel table back to the

main table when it prunes the current master version. For simplicity, we only consider

the first time-travel approach where the master version is always in the main table.

To update a tuple, the DBMS first acquires a slot in the time-travel table and then copies

the master version to this location. It then modifies the master version stored in the main

table. Indexes are not affected by version chain updates because they always point to the

master version. As such, it avoids the overhead of maintaining the database’s indexes

whenever a transaction updates a tuple and is ideal for queries that access the current

version of a tuple.

110

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

This scheme also suffers from the same non-inline attribute problem as the append-only

approach. The data sharing optimization that we describe above is applicable here as

well.

5.4.3 Delta Storage

With this last scheme, the DBMS maintains the master versions of tuples in the main

table and a sequence of delta versions in a separate delta storage. This storage is referred

to as the rollback segment in MySQL and Oracle, and is also used in HyPer. Most

existing DBMSs store the current version of a tuple in the main table. To update an

existing tuple, the DBMS acquires a continuous space from the delta storage for creating

a new delta version. This delta version contains the original values of modified attributes

rather than the entire tuple. The DBMS then directly performs in-place update to the

master version in the main table.

The delta storage scheme is ideal for UPDATE operations that modify a subset of a

tuple’s attributes because it reduces memory allocations. This approach, however, leads

to higher overhead for read-intensive workloads. To perform a read operation that

accesses multiple attributes of a single tuple, the DBMS has to traverse the version chain

to fetch the data for each single attribute that is accessed by the operation.

5.4.4 Discussion

These schemes have different characteristics that affect their behavior for OLTP work-

loads. As such, none of them achieve optimal performance for either workload type. The

append-only scheme is better for analytical queries that perform large scans because

versions are stored contiguously in memory, which minimizes CPU cache misses and is

ideal for hardware prefetching. But queries that access an older version of a tuple suffer

from higher overhead because the DBMS follows the tuple’s chain to find the proper

version. The append-only scheme also exposes physical versions to the index structures,

which enables additional index management options.

111

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

HEAD

HEAD

VERSION CHAINS
GC THREAD

(a) Tuple-level

HEAD

HEAD

Write set Write set
GC THREAD

VERSION CHAINS

TRANSACTIONS

(b) Transaction-level

Figure 5.4: Garbage Collection – Overview of how to examine the database for expired
versions. The tuple-level GC scans the tables’ version chains, whereas the transaction-
level GC uses transactions’ write-sets.

All of the storage schemes require the DBMS to allocate memory for each transaction

from centralized data structures (i.e., tables, delta storage). Multiple threads will access

and update this centralized storage at the same time, thereby causing access contention.

To avoid this problem, the DBMS can maintain separate memory spaces for each

centralized structure (i.e., tables, delta storage) and expand them in fixed-size increments.

Each worker thread then acquires memory from a single space. This essentially partitions

the database, thereby eliminating centralized contention points.

5.5 Garbage Collection

Since multi-versioning scheme creates new versions when transactions update tuples,

the system will run out of space unless it reclaims the versions that are no longer needed.

This also increases the execution time of queries because the DBMS spends more time

traversing long version chains. As such, the performance of a multi-version DBMS is

highly dependent on the ability of its garbage collection (GC) component to reclaim

memory in a transactionally safe manner.

The GC process is divided into three steps: (1) detect reclaimable versions, (2) unlink

those versions from their associated chains and indexes, and (3) reclaim their storage

space. The DBMS considers a version as reclaimable if it is either an invalid version (i.e.,

112

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

created by an aborted transaction) or it is not visible to any active transaction. For the

latter, the DBMS checks whether a version’s end-ts is less than the T id of all active

transactions. The DBMS maintains a centralized data structure to track this information,

but this is a scalability bottleneck in a multi-core system [LBD+11, YBP+14].

An in-memory DBMS can avoid this problem with coarse-grained epoch-based memory

management that tracks the versions created by transactions [TZK+13]. There is always

one active epoch and an FIFO queue of prior epochs. After some amount of time, the

DBMS moves the current active epoch to the prior epoch queue and then creates a new

active one. This transition is performed either by a background thread or in a cooperative

manner by the DBMS’s worker threads. Each epoch contains a count of the number

of transactions that are assigned to it. The DBMS registers each new transaction into

the active epoch and increments this counter. When a transaction finishes, the DBMS

removes it from its epoch (which may no longer be the current active one) and decrements

this counter. If a non-active epoch’s counter reaches zero and all of the previous epochs

also do not contain active transactions, then it is safe for the DBMS to reclaim expired

versions that were updated in this epoch.

There are two GC implementations for a MVCC that differ on how the DBMS looks for

reclaimable versions. The first approach is tuple-level GC wherein the DBMS examines

the visibility of individual tuples. The second is transaction-level GC that checks whether

any version created by a finished transaction is visible. One important thing to note is

that not all of the GC schemes that we discuss below are compatible with every version

storage scheme.

5.5.1 Tuple-level Garbage Collection

With this approach, the DBMS checks the visibility of each individual tuple version in

one of two ways:

Background Vacuuming (VAC): The DBMS uses background threads that periodically

scan the database for expired versions. As shown in Table 5.1, this is the most common

approach implemented in multi-version DBMSs as it is easier to implement and works

113

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

with all version storage schemes. But this mechanism does not scale for large databases,

especially with a small number of GC threads. A more scalable approach is where

transactions register the invalidated versions in a latch-free data structure [LBD+11].

The GC threads then reclaim these expired versions using the epoch-based scheme

described above. Another optimization is where the DBMS maintains a bitmap of dirty

blocks so that the vacuum threads do not examine blocks that were not modified since

the last GC pass.

Cooperative Cleaning (COOP): When executing a transaction, the DBMS traverses

the version chain to locate the visible version. During this traversal, it identifies the

expired versions and records them in a global data structure. This approach scales well

as the GC threads no longer needs to detect expired versions, but it only works for the

O2N append-only storage. One additional challenge is that if transactions do not traverse

a version chain for a particular tuple, then the system will never remove its expired

versions. This problem is called “dusty corners” in Hekaton [DFI+13]. The DBMS

overcomes this by periodically performing a complete GC pass with a separate thread

like in VAC.

5.5.2 Transaction-level Garbage Collection

In this GC mechanism, the DBMS reclaims storage space at transaction-level granularity.

It is compatible with all of the version storage schemes. The DBMS considers a transac-

tion as expired when the versions that it generated are not visible to any active transaction.

After an epoch ends, all of the versions that were generated by the transactions belonging

to that epoch can be safely removed. This is simpler than the tuple-level GC scheme,

and thus it works well with the transaction-local storage optimization (Section 5.4.4)

because the DBMS reclaims a transaction’s storage space all at once. The downside of

this approach, however, is that the DBMS tracks the read/write sets of transactions for

each epoch instead of just using the epoch’s membership counter.

114

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

5.5.3 Discussion

Tuple-level GC with background vacuuming is the most common implementation in

multi-version DBMSs. In either scheme, increasing the number of dedicated GC threads

speeds up the GC process. The DBMS’s performance drops in the presence of long-

running transactions. This is because all the versions generated during the lifetime of

such a transaction cannot be removed until it completes.

5.6 Index Management

All multi-version DBMSs keep the database’s versioning information separate from its

indexes. That is, the existence of a key in an index means that some version exists with

that key but the index entry does not contain information about which versions of the

tuple match. We define an index entry as a key/value pair, where the key is a tuple’s

indexed attribute(s) and the value is a pointer to that tuple. The DBMS follows this

pointer to a tuple’s version chain and then scans the chain to locate the version that is

visible for a transaction. The DBMS will never incur a false negative from an index, but

it may get false positive matches because the index can point to a version for a key that

may not be visible to a particular transaction.

Primary key indexes always point to the current version of a tuple. But how often the

DBMS updates a primary key index depends on whether or not its version storage scheme

creates new versions when a tuple is updated. For example, a primary key index in the

delta scheme always points to the master version for a tuple in the main table, thus the

index does not need to be updated. For append-only, it depends on the version chain

ordering: N2O requires the DBMS to update the primary key index every time a new

version is created. If a tuple’s primary key is modified, then the DBMS applies this to

the index as a DELETE followed by an INSERT.

For secondary indexes, it is more complicated because an index entry’s keys and pointers

can both change. The two management schemes for secondary indexes in a multi-version

DBMS differ on the contents of these pointers. The first approach uses logical pointers

115

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

HEAD

INDEX VERSION CHAINS

HEAD

INDIRECTION

(a) Logical Pointers

HEAD

INDEX VERSION CHAINS

HEAD

(b) Physical Pointers

Figure 5.5: Index Management – The two ways to map keys to tuples in a multi-
version DBMS are to use logical pointers with an indirection layer to the version chain
HEAD or to use physical pointers that point to an exact version.

that use indirection to map to the location of the physical version. Contrast this with

the physical pointers approach where the value is the location of an exact version of the

tuple.

5.6.1 Logical Pointers

The main idea of using logical pointers is that the DBMS uses a fixed identifier that does

not change for each tuple in its index entry. Then, as shown in Figure 5.5a, the DBMS

uses an indirection layer that maps a tuple’s identifier to the HEAD of its version chain.

This avoids the problem of having to update all of a table’s indexes to point to a new

physical location whenever a tuple is modified (even if the indexed attributes were not

changed). Only the mapping entry needs to change each time. But since the index does

not point to the exact version, the DBMS traverses the version chain from the HEAD to

find the visible version. This approach is compatible with any version storage scheme.

As we now discuss, there are two implementation choices for this mapping:

Primary Key (PKey): With this, the identifier is the same as the corresponding tuple’s

primary key. When the DBMS retrieves an entry from a secondary index, it performs

another look-up in the table’s primary key index to locate the version chain HEAD. If a

secondary index’s attributes overlap with the primary key, then the DBMS does not have

to store the entire primary key in each entry.

Tuple Id (TupleId): One drawback of the PKey pointers is that the database’s storage

116

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

overhead increases as the size of a tuple’s primary key increases, since each secondary

index has an entire copy of it. In addition to this, since most DBMSs use an order-

preserving data structure for its primary key indexes, the cost of performing the additional

look-up depends on the number of entries. An alternative is to use a unique 64-bit tuple

identifier instead of the primary key and a separate latch-free hash table to maintain the

mapping information to the tuple’s version chain HEAD.

5.6.2 Physical Pointers

With this second scheme, the DBMS stores the physical address of versions in the index

entries. This approach is only applicable for append-only storage, since the DBMS stores

the versions in the same table and therefore all of the indexes can point to them. When

updating any tuple in a table, the DBMS inserts the newly created version into all the

secondary indexes. In this manner, the DBMS can search for a tuple from a secondary

index without comparing the secondary key with all of the indexed versions. Several

multi-version DBMSs, including MemSQL and Hekaton, employ this scheme.

5.6.3 Discussion

Like the other design decisions, these index management schemes perform differently on

varying workloads. The logical pointer approach is better for write-intensive workloads,

as the DBMS updates the secondary indexes only when a transaction modifies the indexes

attributes. Reads are potentially slower, however, because the DBMS traverses version

chains and perform additional key comparisons. Likewise, using physical pointers is

better for read-intensive workloads because an index entry points to the exact version.

But it is slower for update operations because this scheme requires the DBMS to insert an

entry into every secondary index for each new version, which makes update operations

slower.

One last interesting point is that index-only scans are not possible in a MVCC DBMS

unless the tuples’ versioning information is embedded in each index. The system always

retrieves this information from the tuples themselves to determine which records are

117

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

visible. NuoDB reduces the amount of data read to check versions by storing the header

meta-data separately from the tuple data.

5.7 Experimental Analysis

We now present our analysis of the transaction management design choices discussed

in this chapter. We made a good faith effort to implement state-of-the-art versions

of each of them in the Peloton DBMS [pel]. Peloton stores tuples in row-oriented,

unordered in-memory heaps. It uses libcuckoo [FAK13] hash tables for its internal data

structures and the Bw-Tree [LSL13] for database indexes. We also optimized Peloton’s

performance by leveraging latch-free programming techniques [DGT13]. We execute

all transactions as stored procedures under the SERIALIZABLE isolation level. We

configured Peloton to use the epoch-based memory management (see Section 5.5) with

40 ms epochs [TZK+13].

We deployed Peloton on a 4-socket Intel Xeon E7-4820 server with 128 GB of DRAM

running Ubuntu 14.04 (64-bit). Each socket contains ten 1.9 GHz cores and 25 MB of

L3 cache.

We begin with a comparison of the concurrency control protocols. We then pick the best

overall protocol and use it to evaluate the version storage, garbage collection, and index

management schemes. For each trial, we execute the workload for 60 seconds to let the

DBMS to warm up and measure the throughput after another 120 seconds. We execute

each trial five times and report the average execution time. We summarize our findings

in Section 5.8.

5.7.1 Benchmarks

We next describe the workloads that we use in our evaluation.

YCSB: We modified the YCSB [CST+10] benchmark to model different workload

settings of OLTP applications. The database contains a single table with 10 million

118

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

MVTO MVOCC MV2PL SSN

1 8 16 24 32 40

Number of threads

0

500

1000

1500

2000

2500

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Short Transactions (#Ops=1)

1 8 16 24 32 40

Number of threads

0

16

32

48

64

80

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) Long Transactions (#Ops=100)

Figure 5.6: Scalability Bottlenecks – Throughput comparison of the concurrency con-
trol protocols using the read-only YCSB workload with different number of operations
per transaction.

tuples, each with one 64-bit primary key and 10 64-bit integer attributes. Each operation

is independent; that is, the input of an operation does not depend on the output of a

previous operation. We use three workload mixtures to vary the number of reads/update

operations per transaction: (1) read-only (100% reads), (2) read-intensive (80% reads,

20% updates), and (3) update-intensive (20% reads, 80% updates). We also vary the

number of attributes that operations read or update in a tuple. The operations access

records following a Zipfian distribution that is controlled by a parameter (θ) that affects

the amount of contention (i.e., skew), where θ=1.0 is the highest skew setting.

TPC-C: This benchmark is the current standard for measuring the performance of OLTP

systems [The07]. It models a warehouse-centric order processing application with nine

tables and five transaction types. We modified the original TPC-C workload to include

a new table scan query, called StockScan, that scans the Stock table and counts

the number of items in each warehouse. The amount of contention in the workload is

controlled by the number of warehouses.

5.7.2 Concurrency Control Protocols

We first compare the DBMS’s performance with the concurrency control protocols from

Section 5.3. For SSI, we implement its optimized variant (SSN) [WJFP15]. We fix the

DBMS to use (1) append-only storage with N2O ordering, (2) transaction-level GC, and

119

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

MVTO MVOCC MV2PL SSN

0.1 0.3 0.5 0.7 0.9

Contention level (θ)

0

70

140

210

280

350

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Read-Intensive (R/W=80/20%)

0.1 0.3 0.5 0.7 0.9

Contention level (θ)

0

26

52

78

104

130

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.7: Transaction Contention – Comparison of the concurrency control proto-
cols (40 threads) for the YCSB workload with different workload/contention mixtures.
Each transaction contains 10 operations.

(3) logical mapping index pointers.

Our initial experiments use the YCSB workload to evaluate the protocols. We first

investigate the bottlenecks that prevent them from scaling. We then compare their

performance by varying workload contention. After that, we show how each protocol

behaves when processing heterogeneous workloads that contain both read-write and

read-only transactions. Lastly, we use the TPC-C benchmark to examine how each

protocol behaves under real-world workloads.

Scalability Bottlenecks: This experiment shows how the protocols perform on higher

thread counts. We configured the read-only YCSB workload to execute transactions that

are either short (one operation per transaction) or long (100 operations per transaction).

We use a low skew factor (θ=0.2) and scale the number of threads.

The short transaction workload results in Figure 5.6a show that all but one of the protocols

scales almost linearly up to 24 threads. The main bottleneck for all of these protocols is

the cache coherence traffic from updating the memory manager’s counters and checking

for conflicts when transactions commit (even though there are no writes). The reason

that SSN achieves lower performance is that it maintains a centralized data structure

to track anti-dependencies. When we increase the transaction length to 100 operations,

the results in Figure 5.6b show that the throughput of the protocols is reduced by ∼30×

but they scale linearly up to 40 threads. This is expected since the contention on the

120

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

DBMS’s internal data structures is reduced when there are fewer transactions executed.

Transaction Contention: We next compare the protocols under different levels of

contention. We fix the number of DBMS threads to 40. We use the read-intensive and

update-intensive workloads with 10 operations per transaction. For each workload, we

vary the contention level (θ) in the transactions’ access patterns.

Figure 5.7a shows the DBMS’s throughput for the read-intensive workload. When θ is

less than 0.7, we see that all of the protocols achieve similar throughput. Beyond this

contention level, the performance of MVOCC is reduced by ∼50%. This is because

MVOCC does not discover that a transaction will abort due to a conflict until after the

transaction has already executed its operations. There is nothing about multi-versioning

that helps this situation. Although we see the same drop for the update-intensive results

when contention increases in Figure 5.7b, there is not a significant difference among the

protocols except MV2PL; they handle write-write conflicts in a similar way and again

multi-versioning does not help reduce this type of conflicts.

Heterogeneous Workload: In this next experiment, we evaluate a heterogeneous YCSB

workload that is comprised of a mix of read-write and read-only SERIALIZABLE

transactions. Each transaction contains 100 operations each access a single independent

tuple.

The DBMS uses 20 threads to execute the read-write transactions and we vary the number

of threads that are dedicated to the read-only queries. The distribution of access patterns

for all operations use a high contention setting (θ=0.8). We execute this workload first

where the application does not pre-declare queries as READ ONLY and then again with

this hint.

There are several interesting trends when the application does not pre-declare the read-

only queries. The first is that the throughput of read-write transactions drops in Fig-

ure 5.8a for the MVTO and MV2PL protocols as the number of read-only threads

increases, while the throughput of read-only transactions increases in Figure 5.8b. This

is because these protocols treat readers and writers equally; as any transaction that reads

or writes a tuple blocks other transactions from accessing the same tuple, increasing the

121

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

MVTO MVOCC MV2PL SSN

0 4 8 12 16 20
Number of read-only threads

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Read-Write Throughput

0 4 8 12 16 20
Number of read-only threads

0

7

14

21

28

35

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) Read-Only Throughput

Figure 5.8: Heterogeneous Workload (without READ ONLY) – Concurrency control
protocol comparison for YCSB (θ=0.8). The read-write portion executes a update-
intensive mixture on 20 threads while scaling the number of read-only threads.

number of read-only queries causes a higher abort rate for read-write transactions. Due to

these conflicts, MV2PL only completes a few transactions when the number of read-only

threads is increased to 20. The second observation is that while MVOCC achieves stable

performance for the read-write portion as the number of read-only threads increases, their

performance for read-only portion are lower than MVTO by 2× and 28×, respectively.

The absence of read locks in MVOCC results in the starvation of read-only queries.

The third observation is that SSN achieves a much higher performance for read-write

transactions. This is because SSN tracks anti-dependencies among transactions, and

their abort rate is reduced due to the absence of read set validation.

The results in Figure 5.9 show that the protocols perform differently when the workload

pre-declares the read-only portion of the workload. The first observation is that their

read-only throughput in Figure 5.9b is the same because the DBMS executes these

queries without checking for conflicts. And in Figure 5.9a we see that their throughput

for read-write transactions remains stable as the read-only queries are isolated from the

read-write transactions, hence executing these read-only transactions does not increase

data contention. SSN again performs the best because of the absence of consistency

validation, and it is 1.6× faster than MV2PL and MVTO. MVOCC achieves the lowest

performance because it can result in high abort rate due to validation failure.

TPC-C: Lastly, we compare the protocols using the TPC-C benchmark with the number

122

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

MVTO MVOCC MV2PL SSN

0 4 8 12 16 20
Number of read-only threads

0

1

2

3

4

5

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Read-Write Throughput

0 4 8 12 16 20
Number of read-only threads

0

8

16

24

32

40

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) Read-Only Throughput

Figure 5.9: Heterogeneous Workload (with READ ONLY) – Concurrency control
protocol comparison for YCSB (θ=0.8). The read-write portion executes a update-
intensive mixture on 20 threads while scaling the number of read-only threads.

MVTO MVOCC MV2PL SSN

1 8 16 24 32 40

Number of threads

0

18

36

54

72

90

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Throughput

MVTO MVOCC MV2PL SI+SSN

Concurrency control protocols

0.0

0.6

1.2

1.8

2.4

3.0

A
b
o
rt

 r
a
te

Payment

NewOrder

(b) Abort Rate

Figure 5.10: TPC-C – Throughput and abort rate comparison of the concurrency control
protocols with the TPC-C benchmark.

of warehouses set to 10. This configuration yields a high-contention workload.

The results in Figure 5.10a show that MVTO achieves 45%–120% higher performance

compared to the other protocols. SSN also yields comparatively higher throughput

than the rest of the protocols because it detects anti-dependencies rather than eagerly

abort transactions through consistency validation. MVOCC incurs wasted computation

because it only detects conflicts in the validation phase. A more interesting finding in

Figure 5.10b is that the protocols abort transactions in different ways. MVOCC is more

likely to abort NewOrder transactions, whereas the Payment abort rate in MV2PL is

6.8× higher than NewOrder transactions. These two transactions access the same table,

and again the optimistic protocols only detect read conflicts in NewOrder transactions

123

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Full Copy Reference Counter

10 20 30 40 50

Number of attributes

0

64

128

192

256

320

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Read-Intensive (R/W=80/20%)

10 20 30 40 50

Number of attributes

0

28

56

84

112

140

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.11: Non-Inline Attributes – Evaluation of how to store non-inline attributes
in the append-only storage scheme using the YCSB workload with 40 DBMS threads
and varying the number of attributes in a tuple.

in the validation phase. SSN achieves a low abort rate due to its anti-dependency

tracking, and MVTO can avoid most of the false aborts because the timestamp assigned

to each transaction directly determines their ordering.

5.7.3 Version Storage

We next evaluate the DBMS’s version storage schemes. We begin with an analysis

of the storage mechanisms for non-inline attributes in append-only storage. We then

discuss how the version chain ordering affects the DBMS’s performance for append-only

storage. We next compare append-only with the time-travel and delta schemes using

different YCSB workloads. Lastly, we compare all of the schemes again using the TPC-C

benchmark. For all of these experiments, we configured the DBMS to use the MVTO

protocol since it achieved the most balanced performance in the previous experiments.

Non-Inline Attributes: This first experiment evaluates the performance of different

mechanisms for storing non-inline attributes in append-only storage. We use the YCSB

workload mixtures in this experiment, but the database is changed to contain a single

table with 10 million tuples, each with one 64-bit primary key and a variable num-

ber of 100-byte non-inline VARCHAR type attributes. We use the read-intensive and

update-intensive workloads under low contention (θ=0.2) on 40 threads with each trans-

action executing 10 operations. Each operation only accesses one attribute in a tuple.

124

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Append-only (O2N) Append-only (N2O)

0.1 0.3 0.5 0.7 0.9

Contention level (θ)

0

70

140

210

280

350

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Read-Intensive (R/W=80/20%)

0.1 0.3 0.5 0.7 0.9

Contention level (θ)

0

28

56

84

112

140

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.12: Version Chain Ordering – Evaluation of the version chains for the
append-only storage scheme using the YCSB workload with 40 DBMS threads and
varying contention levels.

Figure 5.11 shows that maintaining reference counters for unmodified non-inline at-

tributes always yields better performance. With the read-intensive workload, the DBMS

achieves∼40% higher throughput when the number of non-inlined attributes is increased

to 50 with these counters compared to conventional full-tuple-copy scheme. This is

because the DBMS avoids redundant data copying for update operations. This difference

is more prominent with the update-intensive workload where the results in Figure 5.11b

show that the performance gap reaches over 100%.

Version Chain Ordering: The second experiment measures the performance of the

N2O and O2N version chain orderings from Section 5.4.1. We use transaction-level

background vacuuming GC and compare the orderings using two YCSB workload

mixtures. We set the transaction length to 10. We fix the number of DBMS threads to 40

and vary the workload’s contention level.

As shown in Figure 5.12, the N2O ordering always performs better than O2N in both

workloads. Although the DBMS updates the indexes’ pointers for each new version under

N2O, this is overshadowed by the cost of traversing the longer chains in O2N. Increasing

the length of the chains means that transactions take longer to execute, thereby increasing

the likelihood that a transaction will conflict with another one. This phenomenon is

especially evident with the measurements under the highest contention level (θ=0.9),

where the N2O ordering achieves 2.4–3.4× better performance.

125

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Append-only Time-travel Delta

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of update operations

0

140

280

420

560

700

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) 10 Attributes

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of update operations

0

50

100

150

200

250

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) 100 Attributes

Figure 5.13: Transaction Footprint – Evaluation of the version storage schemes using
the YCSB workload (θ=0.2) with 40 DBMS threads and varying the percentage of update
operations per transaction.

Append-only Time-travel Delta

1 20 40 60 80 100

Number of attributes modified

0

32

64

96

128

160

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Read-Intensive (R/W=80/20%)

1 20 40 60 80 100

Number of attributes modified

0

16

32

48

64

80

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.14: Attributes Modified – Evaluation of the version storage schemes using
YCSB (θ=0.2) with 40 DBMS threads and varying the number of the tuples’ attributes
that are modified per update operation.

Transaction Footprint: We next compare the storage schemes when we vary the number

of attributes in the tuples. We use the YCSB workload under low contention (θ=0.2) on

40 threads with each transaction executing 10 operations. Each read/update operation

only accesses/modifies one attribute in the tuple. We use append-only storage with

N2O ordering. For all the version storage schemes, we have allocated multiple separate

memory spaces to reduce memory allocation overhead.

As shown in Figure 5.13a, the append-only and delta schemes achieve similar perfor-

mance when the table has 10 attributes. Likewise, the append-only and time-travel

throughput is almost the same. The results in Figure 5.13b indicate that when the table

126

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Append-only Time-travel Delta

1 20 40 60 80 100

Number of attributes read

0

28

56

84

112

140

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) One Modified Attribute per Update

1 20 40 60 80 100

Number of attributes read

0

19

38

57

76

95

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) 100 Modified Attributes per Update

Figure 5.15: Attributes Accessed – Evaluation of the version storage schemes using
YCSB (θ=0.2) with 40 DBMS threads and varying the number of the tuples’ attributes
that are accessed per read operation.

Append-only Time-travel Delta

1 4 8 12 16 20
Number of separate memory spaces

0

70

140

210

280

350

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Read-Intensive (R/W=80/20%)

1 4 8 12 16 20
Number of separate memory spaces

0

36

72

108

144

180

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.16: Memory Allocation – Evaluation of the memory allocation effects to the
version storage schemes using the YCSB workload with 40 DBMS threads and varying
the number of separate memory spaces.

has 100 attributes, the delta scheme achieves ∼2× better performance than append-only

and time-travel schemes because it uses less memory.

Attributes Modified: We now fix the number of attributes in the table to 100 and vary

the number of attributes that are modified by transactions per update operation. We use

the read-intensive and update-intensive workloads under low contention (θ=0.2) on 40

threads with each transaction executing 10 operations. Like the previous experiment,

each read operation accesses one attribute.

Figure 5.14 shows that the append-only and time-travel schemes’ performance is stable

regardless of the number of modified attributes. As expected, the delta scheme performs

127

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Append-only Time-travel Delta

2 8 16 24 32 40

Number of threads

0

24

48

72

96

120

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(a) Throughput

2 8 16 24 32 40

Number of threads

0.0

0.7

1.4

2.1

2.8

3.5

L
a
te

n
c
y
 (

s
)

(b) Scan Latency

Figure 5.17: TPC-C – Throughput and latency comparison of the version storage
schemes with the TPC-C benchmark.

the best when the number of modified attributes is small because it copies less data per

version. But as the scope of the update operations increases, it is equivalent to the others

because it copies the same amount of data per delta.

To measure how modified attributes affect reads, we vary the number of attributes

accessed per read operation. Figure 5.15a shows that when updates only modify one

(random) attribute, increasing the number of read attributes largely affects the delta

schemes. This is expected as the DBMS has to spend more time traversing the version

chains to retrieve targeted columns. The performance of append-only storage and time-

travel storage also degrades because the inter-socket communication overhead increases

proportionally to the amount of data accessed by each read operation. This observation

is consistent with the results in Figure 5.15b, where update operations modify all of

the tuples’ attributes, and increasing the number of attributes accessed by each read

operation degrades the performance of all the storage schemes.

Memory Allocation: We next evaluate how memory allocation affects the performance

of the version storage schemes. We use the YCSB workload under low contention

(θ=0.2) on 40 threads. Each transaction executes 10 operations that each access only one

attribute of a tuple. We change the number of separate memory spaces and measure the

DBMS’s throughput. The DBMS expands each memory space in 512 KB increments.

Figure 5.16 shows that the delta storage scheme’s performance is stable regardless of the

128

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

number of memory spaces that the DBMS allocates. In contrast, the append-only and

time-travel schemes’ throughput is improved by 1.6–4× when increasing the number

of separate memory spaces from 1 to 20. This is because delta storage only copies the

modified attributes of a tuple, which requires a limited amount of memory. Contrast to

this, the other two storage schemes frequently acquire new slots to hold the full copy of

every newly created tuple version, thereby increasing the DBMS’s memory allocation

overhead.

TPC-C: Lastly, we compare the schemes using TPC-C. We set the number of warehouses

to 40, and scale up the number of threads to measure the overall throughput and the

StockScan query latency.

The results in Figure 5.17a show that append-only storage achieves comparatively better

performance than the other two schemes. This is because this scheme can lead to lower

overhead when performing multi-attribute read operations, which are prevalent in the

TPC-C benchmark. Although the delta storage scheme allocates less memory when

creating new versions, this advantage does not result in a notable performance gain as

our implementation has optimized the memory management by maintaining multiple

spaces. Time-travel scheme suffers lower throughput as it does not bring any benefits for

read or write operations. In Figure 5.17b, we see that the append-only and time-travel

schemes are better for table scan queries. With delta storage, the latency of the scan

queries grows near-linearly with the increase of number of threads (which is bad), while

the append-only and time-travel schemes maintain a latency that is 25–47% lower when

using 40 threads.

5.7.4 Garbage Collection

We now evaluate the GC mechanisms from Section 5.5. For these experiments, we

use the MVTO concurrency control protocol. We first compare background versus

cooperative cleaning in tuple-level GC. We then compare tuple-level and transaction-

level approaches.

Tuple-level Comparison: We use the update-intensive workload (10 operations per

129

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Tuple-level (VAC) Tuple-level (COOP) Disabled

0 20 40 60 80 100 120
Elapsed time (s)

0

40

80

120

160

200

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Read-Intensive (R/W=80/20%)

0 20 40 60 80 100 120
Elapsed time (s)

0

16

32

48

64

80

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.18: Tuple-level Comparison (Throughput) – The DBMS’s throughput mea-
sured over time for YCSB workloads with 40 threads using the tuple-level GC mecha-
nisms.

Tuple-level (VAC) Tuple-level (COOP) Disabled

0 20 40 60 80 100 120
Elapsed time (s)

0.0

0.5

1.0

1.5

2.0

2.5

M
e

m
o

ry
 (

v
e

rs
io

n
s
/t

x
n

)

(a) Read-Intensive (R/W=80/20%)

0 20 40 60 80 100 120
Elapsed time (s)

0.0

2.2

4.4

6.6

8.8

11.0

M
e

m
o

ry
 (

v
e

rs
io

n
s
/t

x
n

)

(b) Update-Intensive (R/W=20/80%)

Figure 5.19: Tuple-level Comparison (Memory) – The amount of memory that the
DBMS allocates per transaction over time (lower is better) for YCSB workloads with 40
threads using the tuple-level GC mechanisms.

transaction) with low and high contentions. The DBMS uses append-only storage with

O2N ordering, as COOP only works with this ordering. We configure the DBMS to

use 40 threads for transaction processing and one thread for GC. We report both the

throughput of the DBMS over time as well as the amount of new memory that is allocated

in the system. To better understand the impact of GC, we also execute the workload with

it disabled.

The results in Figure 5.18 show that COOP achieves 45% higher throughput compared

to VAC under read-intensive workloads. In Figure 5.19, we see that COOP has a 30–

60% lower memory footprint per transaction than VAC. Compared to VAC, COOP’s

130

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Tuple-level Transaction-level Disabled

0 20 40 60 80 100 120
Elapsed time (s)

0

52

104

156

208

260

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Read-Intensive (R/W=80/20%)

0 20 40 60 80 100 120
Elapsed time (s)

0

15

30

45

60

75

T
h

ro
u

g
h

p
u

t
(K

 t
p

s
)

(b) Update-Intensive (R/W=20/80%)

Figure 5.20: Tuple-level vs. Transaction-level (Throughput) – Sustained throughput
measured over time for two YCSB workloads (θ=0.8) using the different GC mecha-
nisms.

Tuple-level Transaction-level Disabled

0 20 40 60 80 100 120
Elapsed time (s)

0.00

0.52

1.04

1.56

2.08

2.60

M
e

m
o

ry
 (

v
e

rs
io

n
s
/t

x
n

)

(a) Read-Intensive (R/W=80/20%)

0 20 40 60 80 100 120
Elapsed time (s)

0.0

2.4

4.8

7.2

9.6

12.0

M
e

m
o

ry
 (

v
e

rs
io

n
s
/t

x
n

)

(b) Update-Intensive (R/W=20/80%)

Figure 5.21: Tuple-level vs. Transaction-level (Memory) – The amount of memory
that the DBMS allocates per transaction over time (lower is better) for two YCSB
workloads (θ=0.8) using the different GC mechanisms.

performance is more stable, as it amortizes the GC overhead across multiple threads and

the memory is reclaimed more quickly. For both workloads, we see that performance

declines over time when GC is disabled because the DBMS traverses longer version

chains to retrieve the versions. Furthermore, because the system never reclaims memory,

it allocates new memory for every new version.

Tuple-level vs. Transaction-level: We next evaluate the DBMS’s performance when

executing two YCSB workloads (high contention) mixture using the tuple-level and

transaction-level mechanisms. We configure the DBMS to use append-only storage with

N2O ordering. We set the number of worker threads to 40 and one thread for background

131

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

vacuuming (VAC). We also execute the same workload using 40 threads but without any

GC.

The results in Figure 5.20a indicate that transaction-level GC achieves slightly better

performance than tuple-level GC for the read-intensive, but the gap increases to 20% in

Figure 5.20b for the update-intensive workload. Transaction-level GC removes expired

versions in batches, thereby reducing the synchronization overhead. Both mechanisms

improve throughput by 20–30% compared to when GC is disabled. Figure 5.21 shows

that both mechanisms reduce the memory usage.

5.7.5 Index Management

Lastly, we compare the index pointer schemes described in Section 5.6. The main aspect

of a database that affects the DBMS’s performance with these schemes is secondary

indexes. The DBMS updates pointers any time a new version is created. Thus, we

evaluate the schemes while increasing the number of secondary indexes in the database

with the update-intensive YCSB workload. We configure DBMS to use the MVTO

concurrency control protocol with append-only storage (N2O ordering) and transaction-

level COOP GC for all of the trials. We use append-only storage because it is the only

scheme that supports physical index pointers. For logical pointers, we map each index

key to the HEAD of a version chain.

The results in Figure 5.22b show that under high contention, logical pointer achieves

25% higher performance compared to physical pointer scheme. Under low contention,

Figure 5.22a shows that the performance gap is enlarged to 40% with the number of

secondary indexes increased to 20. Figure 5.23 further shows the advantage of logical

pointers. The results show that for the high contention workload, the DBMS’s throughput

when using logical pointers is 45% higher than the throughput of physical pointers. This

performance gap decreases in both the low contention and high contention workloads

with the increase of number of threads.

132

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

Logical Pointers Physical Pointers

0 1 4 8 12 16 20
Number of secondary indexes

0

18

36

54

72

90

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Low contention (θ=0.2)

0 1 4 8 12 16 20
Number of secondary indexes

0

15

30

45

60

75

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) High contention (θ=0.8)

Figure 5.22: Index Management – Transaction throughput achieved by varying the
number of secondary indexes.

Logical Pointers Physical Pointers

1 8 16 24 32 40

Number of threads

0

14

28

42

56

70

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) Low contention (θ=0.2)

1 8 16 24 32 40

Number of threads

0

12

24

36

48

60

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) High contention (θ=0.8)

Figure 5.23: Index Management – Throughput for update-intensive YCSB with eight
secondary indexes when varying the number of threads.

5.8 Discussion

Our analyses and experiments of these transaction management design schemes in

multi-version DBMSs produced four findings. Foremost is that version storage scheme

is the most important component to scaling an in-memory multi-version DBMS in a

multi-core environment. This goes against the conventional wisdom in database research

that has mostly focused on optimizing the concurrency control protocols [YBP+14]. We

observed that the performance of append-only and time-travel schemes are influenced by

the efficiency of the underlying memory allocation schemes. Contrast this with the delta

storage scheme that is able to sustain a comparatively high performance regardless of

the memory allocation, especially when only a subset of the attributes stored in the table

133

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

is modified. But this scheme suffers from low table scan performance, and may not be a

good fit for read-heavy analytical workloads.

We next showed that using a workload-appropriate concurrency control protocol im-

proves the performance, particularly on high-contention workloads. The results in

Section 5.7.2 show that the protocol optimizations can hurt the performance on these

workloads. Overall, we found that MVTO works well on a variety of workloads. None

of the systems that we list in Table 5.1 adopt this protocol.

We also observed that the performance of a multi-version DBMS is tightly coupled with

its GC implementation. In particular, we found that a transaction-level GC provided the

best performance with the smallest memory footprint. This is because it reclaims expired

tuple versions with lower synchronization overhead than the other approaches. We

note that the GC process can cause oscillations in the system’s throughput and memory

footprint.

Lastly, we found that the index management scheme can also affect the DBMS’s per-

formance for databases with many secondary indexes are constructed. The results in

Section 5.7.5 show that logical pointer scheme always achieve a higher throughput

especially when processing update-intensive workloads. This corroborates other reports

in industry on this problem [Kli16].

To verify these findings, we performed one last experiment with Peloton where we

configured it to use the MVCC configurations listed in Table 5.1. We execute the

TPC-C workload and use one thread to repeatedly execute the StockScan query. We

measure the DBMS’s throughput and the average latency of StockScan queries. We

acknowledge that there are other factors in the real DBMSs that we are not capturing in

this experiment (e.g., data structures, storage architecture, query compilation), but this is

still a good approximation of their abilities.

As shown in Figure 5.24, the DBMS performs the best on both the low-contention

and high-contention workloads with the NuoDB configuration. The Oracle/MySQL

and HyPer configurations reduce memory copying because of the use of delta storage

scheme, whereas the NuoDB configuration achieves higher performance because the

134

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

'Oracle/MySQL'

'Postgres'

'HYRISE'
'HEKATON'

'MemSQL'
'SAP HANA'

'NuoDB'

'HyPer'

2 8 16 24 32 40

Number of threads

0

9

18

27

36

45

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(a) 10 warehouses

2 8 16 24 32 40

Number of threads

0

18

36

54

72

90

T
h
ro

u
g
h
p
u
t
(K

 t
p
s
)

(b) 40 warehouses

Figure 5.24: Configuration Comparison (Throughput) – Performance of the MVCC
configurations from Table 5.1 with the TPC-C benchmark.

'Oracle/MySQL'

'Postgres'

'HYRISE'
'HEKATON'

'MemSQL'
'SAP HANA'

'NuoDB'

'HyPer'

8 24 40

Number of threads

0.00

0.24

0.48

0.72

0.96

1.20

L
a

te
n

c
y
 (

s
)

(a) 10 warehouses

8 24 40

Number of threads

0.0

0.8

1.6

2.4

3.2

4.0

L
a
te

n
c
y
 (

s
)

(b) 40 warehouses

Figure 5.25: Configuration Comparison (Scan Latency) – Performance of the MVCC
configurations from Table 5.1 with the TPC-C benchmark.

append-only storage scheme shortens the processing time for read operations that access

multiple attributes. The comparison between NuoDB and SAP HANA configurations

demonstrates that the concurrency control protocol choice also has a strong impact on

the throughput, depending on the contention of workloads.

But the latency results in Figure 5.25 show that the DBMS’s performance is the worst

with delta storage. This is because the delta storage has to spend more time on traversing

version chains so as to find the targeted tuple version attribute.

135

Chapter 5. Multi-Version Transaction Management: An Evaluation on
Multi-Cores

5.9 Summary

We presented an evaluation of the main design decisions of multi-versioning schemes

in an in-memory DBMS. We described the state-of-the-art implementations for each of

them and showed how they are used in existing systems. We then implemented all of

them in the Peloton DBMS and evaluated them using two OLTP workloads to highlight

their trade-offs. We demonstrated the issues that prevent a DBMS from scaling to support

larger CPU core counts and more complex workloads.

136

CHAPTER 6
Future Works

In the previous chapters, we have discussed the design and implementation of multi-core

main-memory DBMSs that target at achieving scalable transaction processing under

modern OLTP workloads. We proposed several novel mechanisms to eliminate scalability

bottlenecks embedded in two key DBMS components, namely, concurrency control

protocol and logging and recovery. We also performed detailed empirical evaluation

on the transaction management in main-memory multi-version DBMSs. The extensive

performance studies have confirmed the scalability of our proposals.

While the mechanism proposed in the previous chapters allow the DBMSs to achieve

excellent performance for OLTP workloads in the modern multi-core and main-memory

settings, a new requirement emerged in recent years is to endow the DBMSs with the

capacity for for analyzing data immediately after performing transactional queries. In

other words, modern DBMSs are expected to achieve high performance when processing

a breed of workload, called hybrid transactional and analytical processing (HTAP)

workload, which mixes short-lived transactional queries with long-running analytical

queries for the purpose of real-time operational intelligence processing.

A straightforward solution for supporting HTAP workloads in the existing DBMSs is to

adopt MVCC scheme which allows the remote clients to perform read-only analytical

transactions for querying an old consistent state can proceed without synchronizing

with concurrent read-write transactions. However, the performance benefits brought by

multi-versioning diminish when the DBMS is requested to process transactions at full

serializability isolation level. Meanwhile, the introduction of modern heterogeneous

137

Chapter 6. Future Works

workloads that include long-running read-mostly transactions makes the scaling of in-

memory multi-version DBMSs even more difficult. From the perspective of concurrency,

as modern in-memory DBMSs can finish processing an OLTP transaction within a very

short time duration, most transactions will directly access the latest version of a tuple,

consequently causing higher synchronization overhead among readers and writers that

access the same tuple. From the perspective of durability, conventional ARIES-style write

ahead logging put high pressure on both memory allocation and disk I/O, as any changes

made by each transaction have to be persisted into secondary storages. In addition,

the creation of extra versions of a tuple further burdens the memory management of

the DBMSs, and this problem can be exacerbated due to the existence of long-running

transactions, which block the garbage collection as older versions may still be visible to

these active transactions.

We are developing a new epoch-centric multi-versioning implementation that allows

DBMSs to achieve high concurrency and fast durability with efficient memory man-

agement capability. Observing that the synchronization between readers and writers

happens only if both operations are accessing the same version of a tuple, our proposed

epoch-based concurrency control protocol eagerly avoids read-write conflicts by se-

lectively constructing the read-write set at runtime. In addition to higher concurrency,

multi-versioning in the proposed architecture also offers the opportunity to minimize the

logging overhead. The architecture’s group commit scheme fully utilizes this advantage

and periodically persists only the final change made within an epoch to the secondary

storage. Furthermore, an epoch-based resource management scheme is developed to

track the before image created by each transaction and reclaim any unreachable versions

even in the presence of long-running transactions.

We are integrating the proposed framework into Peloton, a fully fledged in-memory

DBMS designed for high performance transactional and analytical processing. We

carefully evaluate the performance of our proposal using different HTAP workloads,

and measure whether the architecture sustain high performance even when processing

heterogeneous workloads.

138

CHAPTER 7
Conclusion

In this thesis, we presented our exploration on the design and implementation of scal-

able multi-core main-memory DBMSs for supporting modern OLTP workloads. We

performed a comprehensive study on the DBMS architectures, and optimized the sys-

tem performance by investigating and addressing the scalability bottlenecks from two

major DBMS components, including concurrency control protocol and logging and

recovery. We further analyzed the transaction management schemes in modern main-

memory multi-version DBMSs. Our main contributions made to these components are

summarized as follows.

Concurrency Control Protocol. Today’s main-memory DBMSs can support very high

transaction rate when supporting modern OLTP applications. However, when a large

number of concurrent transactions contend on the same tuples, the DBMS performance

can deteriorate significantly. This is especially the case when scaling transaction process-

ing with optimistic concurrency control (OCC) on multi-core machines. We proposed

a new concurrency control protocol, called transaction healing, that exploits program

semantics to scale the conventional OCC towards dozens of cores even under highly

contended workloads. Transaction healing captures the dependencies across operations

within a transaction prior to its execution. Instead of blindly rejecting a transaction once

its validation fails, the proposed mechanism judiciously restores any non-serializable

operation and heals inconsistent transaction states as well as query results according to

the extracted dependencies. Transaction healing can partially update the membership

of read/write sets when processing dependent transactions. Such overhead, however, is

largely reduced by carefully avoiding false aborts and rearranging validation orders. By

139

Chapter 7. Conclusion

evaluating transaction healing on a 48-core machine with two widely-used benchmarks,

we confirmed that the proposed mechanism can scale near-linearly, yielding significantly

higher transaction throughput than the state-of-the-art concurrency control protocols.

Logging and Recovery. Main-memory DBMSs can achieve excellent performance

when processing massive volumes of on-line transactions on modern multi-core ma-

chines. However, existing durability schemes, namely, tuple-level and transaction-level

logging-and-recovery mechanisms, either degrade the performance of transaction pro-

cessing or slow down the process of failure recovery. Observing this problem, we

demonstrated that, by exploiting application semantics, it is possible to achieve speedy

failure recovery without introducing any costly logging overhead to the execution of

concurrent transactions. We propose PACMAN, a parallel database recovery mechanism

that is specifically designed for lightweight, coarse-grained transaction-level logging.

PACMAN leverages a combination of static and dynamic analyses to parallelize the

log recovery: at compile time, PACMAN decomposes stored procedures by carefully

analyzing dependencies within and across programs; at recovery time, PACMAN exploits

the availability of the runtime parameter values to attain an execution schedule with a

high degree of parallelism. As such, recovery performance is remarkably increased. We

evaluated PACMAN in a fully-fledged main-memory DBMS running on a 40-core ma-

chine. Compared to several state-of-the-art database recovery mechanisms, PACMAN can

significantly reduce recovery time without compromising the efficiency of transaction

processing.

Multi-Version Transaction Management. Most of the modern DBMSs implement

multi-version concurrency control (MVCC) for high performance processing transac-

tions. While maintaining multiple versions of data potentially increases parallelism

without sacrificing serializability, managing the versions for these DBMSs can become a

challenging problem. This is especially true when scaling multi-version DBMSs in the

modern multi-core, in-memory settings: when there are a large number of threads running

in parallel, the synchronization overhead can outweigh the benefits of multi-versioning.

To understand how transaction management schemes in multi-version DBMSs perform

in modern hardware settings, we conducted an extensive study of transaction manage-

140

Chapter 7. Conclusion

ment’s four key design decisions: concurrency control protocol, version storage, garbage

collection, and index management. We implemented state-of-the-art variants of all of

these in an in-memory DBMS and evaluated them using various types of OLTP work-

loads. Our analysis identified several fundamental bottlenecks of each design choice,

and development guides are provided for implementing multi-version DBMSs optimized

for different types of workloads.

Based on the three works we have presented in this thesis, we further provided some

hints in the design and implementation of multi-core main-memory DBMSs for the

emerging HTAP workloads, which mix the short-lived transactional queries with long-

running analytical queries. We proposed a new epoch-centric multi-version transaction

processing framework that significantly boosts the DBMS performance through a com-

prehensive redesign of the transaction management. The new architecture’s design and

implementation fully absorbs the experiences we have learned from the three works

discussed above, and the principle behind it is more realistic, and can be directly applied

to many modern multi-core main-memory DBMSs.

To sum up, the works described in this thesis enable a multi-core main-memory DBMS

to achieve scalable transaction processing when supporting massive various types of

transactional workloads.

141

References

[AAS11] Yehuda Afek, Hillel Avni, and Nir Shavit. Towards Consistency Oblivious

Programming. In OPODIS, 2011.

[ABGS87] Divyakant Agrawal, Arthur J Bernstein, Pankaj Gupta, and Soumitra

Sengupta. Distributed Optimistic Concurrency Control With Reduced

Rollback. Distributed Computing, 2(1), 1987.

[ACFR08] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Röhm. The

Cost of Serializability on Platforms That Use Snapshot Isolation. In

ICDE, 2008.

[AK14] Hillel Avni and Bradley C Kuszmaul. Improving HTM Scaling with

Consistency-Oblivious Programming. In TRANSACT, 2014.

[All70] Frances E Allen. Control Flow Analysis. In ACM SIGPLAN Notices,

1970.

[APM16] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. Bridging the

Archipelago between Row-Stores and Column-Stores for Hybrid Work-

loads. In SIGMOD, 2016.

[AS92] Todd M Austin and Gurindar S Sohi. Dynamic Dependency Analysis of

Ordinary Programs. In ISCA, 1992.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,

and Patrick O’Neil. A Critique of ANSI SQL Isolation Levels. In

SIGMOD, 1995.

[BBG+98] Jerry Baulier, Philip Bohannon, S Gogate, S Joshi, C Gupta, A Khivesera,

Henry F Korth, Peter McIlroy, J Miller, PPS Narayan, et al. DataBlitz: A

High Performance Main-Memory Storage Manager. In VLDB, 1998.

143

References

[BD15] Philip A Bernstein and Sudipto Das. Scaling Optimistic Concurrency

Control by Approximately Partitioning the Certifier and Log. IEEE Data

Eng. Bull, 38(1), 2015.

[BDDP15] Philip A Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman.

Optimizing Optimistic Concurrency Control for Tree-Structured, Log-

Structured Databases. In SIGMOD, 2015.

[BG81] Philip A Bernstein and Nathan Goodman. Concurrency Control in Dis-

tributed Database Systems. CSUR, 13(2), 1981.

[BGL99] Arthur J Bernstein, David S Gerstl, and Philip M Lewis. Concurrency

Control for Step-Decomposed Transactions. Information Systems, 24(8),

1999.

[BHG87] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-

rency Control and Recovery in Database Systems. 1987.

[BRD11] Philip A Bernstein, Colin W Reid, and Sudipto Das. Hyder-A Transac-

tional Record Manager for Shared Flash. In CIDR, 2011.

[BRM10] Colin Blundell, Arun Raghavan, and Milo MK Martin. RETCON: Trans-

actional Repair Without Replay. In ISCA, 2010.

[BRWY11] Philip A Bernstein, Colin W Reid, Ming Wu, and Xinhao Yuan. Opti-

mistic Concurrency Control by Melding Trees. In VLDB, 2011.

[cav] Cavalia. https://github.com/Cavalia/Cavalia.

[CDE+12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christo-

pher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher

Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Ko-

gan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David

Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal

Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Span-

ner: Google’s Globally-Distributed Database. In OSDI, 2012.

144

References

[CJZM10] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: A

Workload-Driven Approach to Database Replication and Partitioning. In

VLDB, 2010.

[CL12] James Cowling and Barbara Liskov. Granola: Low-Overhead Distributed

Transaction Coordination. In USENIX ATC, 2012.

[CM86] Michael J Carey and Waleed A Muhanna. The Performance of Multiver-

sion Concurrency Control Algorithms. TOCS, 4(4), 1986.

[CMAM12] Alvin Cheung, Samuel Madden, Owen Arden, and Andrew C Myers.

Automatic Partitioning of Database Applications. In VLDB, 2012.

[CMSL14a] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. Sloth:

Being Lazy Is a Virtue (When Issuing Database Queries). In SIGMOD,

2014.

[CMSL+14b] Alvin Cheung, Samuel Madden, Armando Solar-Lezama, Owen Arden,

and Andrew C Myers. Using Program Analysis to Improve Database

Applications. IEEE Data Eng. Bull., 37(1), 2014.

[CRF09] Michael J Cahill, Uwe Röhm, and Alan D Fekete. Serializable Isolation

for Snapshot Databases. In SIGMOD, 2009.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.

In SoCC, 2010.

[CVSS+11] Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan De-

mers, Johannes Gehrke, and Walker White. Fast Checkpoint Recovery

Algorithms for Frequently Consistent Applications. In SIGMOD, 2011.

[CWS+16] Yanzhe Chen, Xingda Wei, Jiaxin Shi, Rong Chen, and Haibo Chen.

Fast and General Distributed Transactions using RDMA and HTM. In

EuroSys, 2016.

145

References

[DAEA13] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An

Elastic, Scalable, and Self-Managing Transactional Database for the

Cloud. TODS, 38(1), 2013.

[DFI+13] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin

Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. Hekaton:

SQL Server’s Memory-Optimized OLTP Engine. In SIGMOD, 2013.

[DGT13] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything

You Always Wanted To Know About Synchronization But Were Afraid

To Ask. In SOSP, 2013.

[DKDG15] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke. Centiman:

Elastic, High Performance Optimistic Concurrency Control by Water-

marking. In SoCC, 2015.

[DKO+84] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,

Michael R Stonebraker, and David A Wood. Implementation Techniques

for Main Memory Database Systems. 14(2), 1984.

[DPCCM13] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-

tional Databases. In VLDB, 2013.

[DPT+13] Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and

Stan Zdonik. Anti-Caching: A New Approach to Database Management

System Architecture. In VLDB, 2013.

[EGLT76] Kapali P. Eswaran, Jim N Gray, Raymond A. Lorie, and Irving L. Traiger.

The Notions of Consistency and Predicate Locks in a Database System.

Communications of the ACM, 19(11), 1976.

[FA14] Jose M Faleiro and Daniel J Abadi. Rethinking Serializable Multiversion

Concurrency Control. In VLDB, 2014.

146

References

[FA15] Jose M Faleiro and Daniel J Abadi. Rethinking Serializable Multiversion

Concurrency Control. In VLDB, 2015.

[FAK13] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact

and Concurrent MemCache with Dumber Caching and Smarter Hashing.

In NSDI, 2013.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and

Dennis Shasha. Making Snapshot Isolation Serializable. TODS, 30(2),

2005.

[FTA14] Jose M Faleiro, Alexander Thomson, and Daniel J Abadi. Lazy Evalua-

tion of Transactions in Database Systems. In SIGMOD, 2014.

[GK85] Dieter Gawlick and David Kinkade. Varieties of Concurrency Control in

IMS/VS Fast Path. IEEE Data Eng. Bull., 8(2), 1985.

[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Alexander Zeier, Philippe

Cudre-Mauroux, and Samuel Madden. HYRISE: A Main Memory Hybrid

Storage Engine. In VLDB, 2010.

[GM83] Hector Garcia-Molina. Using Semantic Knowledge for Transaction

Processing in a Distributed Database. TODS, 8(2), 1983.

[GMS87] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD, 1987.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and

Techniques. 1992.

[Har] Ann Harrison. InterBase’s Beginnings. http://www.

firebirdsql.org/en/ann-harrison-s-reminiscences-

on-interbase-s-beginnings/.

[Her90] Maurice Herlihy. Apologizing Versus Asking Permission: Optimistic

Concurrency Control for Abstract Data Types. TODS, 15(1), 1990.

[HLR10] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory.

Morgan and Claypool Publishers, 2010.

147

http://www.firebirdsql.org/en/ann-harrison-s-reminiscences-on-interbase-s-beginnings/
http://www.firebirdsql.org/en/ann-harrison-s-reminiscences-on-interbase-s-beginnings/
http://www.firebirdsql.org/en/ann-harrison-s-reminiscences-on-interbase-s-beginnings/

References

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.

Composable Memory Transactions. In PPoPP, 2005.

[Hor13] Takashi Horikawa. Latch-Free Data Structures for DBMS: Design, Im-

plementation, and Evaluation. In SIGMOD, 2013.

[HZN+10] Sándor Héman, Marcin Zukowski, Niels J Nes, Lefteris Sidirourgos, and

Peter Boncz. Positional Update Handling in Column Stores. In SIGMOD,

2010.

[ibm] IBM. http://www.ibm.com/.

[JHF+13] Hyungsoo Jung, Hyuck Han, Alan D Fekete, Gernot Heiser, and Heon Y

Yeom. A Scalable Lock Manager for Multicores. In SIGMOD, 2013.

[JLR+94] Hosagrahar V Jagadish, Daniel Lieuwen, Rajeev Rastogi, Abraham Sil-

berschatz, and S Sudarshan. Dali: A High Performance Main Memory

Storage Manager. In VLDB, 1994.

[JPH+09] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki,

and Babak Falsafi. Shore-MT: A Scalable Storage Manager for the

Multicore Era. In EDBT, 2009.

[JPS+10] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis,

and Anastasia Ailamaki. Aether: A Scalable Approach to Logging. In

VLDB, 2010.

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,

Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,

Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi.

H-Store: A High-Performance, Distributed Main Memory Transaction

Processing System. In VLDB, 2008.

[Kli16] Evan Klitzke. Why Uber Engineering Switched from Postgres to MySQL.

https://eng.uber.com/mysql-migration/, July 2016.

148

https://eng.uber.com/mysql-migration/

References

[KN11] Alfons Kemper and Thomas Neumann. HyPer: A Hybrid OLTP & OLAP

Main Memory Database System Based on Virtual Memory Snapshots. In

ICDE, 2011.

[KR81] Hsiang-Tsung Kung and John T Robinson. On Optimistic Methods for

Concurrency Control. TODS, 6(2), 1981.

[KWRP16] Kangnyeon Kim, Tianzheng Wang, Johnson Ryan, and Ippokratis Pandis.

ERMIA: Fast Memory-Optimized Database System for Heterogeneous

Workloads. In SIGMOD, 2016.

[LBD+11] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jig-

nesh M Patel, and Mike Zwilling. High-Performance Concurrency Con-

trol Mechanisms for Main-Memory Databases. In VLDB, 2011.

[LC86a] Tobin J Lehman and Michael J Carey. A Study of Index Structures for

Main Memory Database Management Systems. In VLDB, 1986.

[LC86b] Tobin J Lehman and Michael J Carey. Query Processing in Main Memory

Database Management Systems. In SIGMOD, 1986.

[LC87] Tobin J Lehman and Michael J Carey. A Recovery algorithm for a

high-performance memory-resident database system. In SIGMOD, 1987.

[LCF+14] Heiner Litz, David Cheriton, Amin Firoozshahian, Omid Azizi, and

John P Stevenson. SI-TM: Reducing Transactional Memory Abort Rates

Through Snapshot Isolation. In ASPLOS, 2014.

[LE93] Xi Li and Margaret H Eich. Post-Crash Log Processing for Fuzzy Check-

pointing Main Memory Databases. In ICDE, 1993.

[LFWW12] David Lomet, Alan Fekete, Rui Wang, and Peter Ward. Multi-Version

Concurrency via Timestamp Range Conflict Management. In ICDE,

2012.

[LKN13] Viktor Leis, Alfons Kemper, and Thomas Neumann. The Adaptive Radix

Tree: ARTful Indexing for Main-Memory Databases. In ICDE, 2013.

149

References

[LKN14] Viktor Leis, Alfons Kemper, and Tobias Neumann. Exploiting Hardware

Transactional Memory in Main-Memory Databases. In ICDE, 2014.

[LLS13] Justin J Levandoski, P-A Larson, and Radu Stoica. Identifying Hot and

Cold Data in Main-Memory Databases. In ICDE, 2013.

[LLS+15] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and

Rui Wang. Multi-Version Range Concurrency Control in Deuteronomy.

In VLDB, 2015.

[LMM+13] Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal Sikka,

Hasso Plattner, Jens Krueger, and Martin Grund. High-Performance

Transaction Processing in SAP HANA. IEEE Data Eng. Bull., 36(2),

2013.

[LSL13] David B. Lomet, Sudipta Sengupta, and Justin J. Levandoski. The Bw-

Tree: A B-tree for New Hardware Platforms. In ICDE, 2013.

[LSP+16] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun

Noh, Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. Hy-

brid Garbage Collection for Multi-Version Concurrency Control in SAP

HANA. In SIGMOD, 2016.

[LTZ11] David Lomet, Kostas Tzoumas, and Michael Zwilling. Implementing

Performance Competitive Logical Recovery. In VLDB, 2011.

[LW06] A-P Liedes and Antoni Wolski. Siren: A Memory-Conserving, Snapshot-

Consistent Checkpoint Algorithm for In-Memory Databases. In ICDE,

2006.

[MCZ+14] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Ex-

tracting More Concurrency from Distributed Transactions. In OSDI,

2014.

[mem] MemSQL. http://www.memsql.com.

150

http://www.memsql.com

References

[MHL+92] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter

Schwarz. ARIES: A Transaction Recovery Method Supporting Fine-

Granularity Locking and Partial Rollbacks Using Write-Ahead Logging.

TODS, 17(1), 1992.

[mic] Microsoft. https://www.microsoft.com/.

[MKM12] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Crafti-

ness for Fast Multicore Key-Value Storage. In EuroSys, 2012.

[MLS15] Darko Makreshanski, Justin Levandoski, and Ryan Stutsman. To Lock,

Swap, or Elide: On the Interplay of Hardware Transactional Memory and

Lock-Free Indexing. In VLDB, 2015.

[Moh90] C Mohan. ARIES/KVL: A Key-Value Locking Method for Concurrency

Control of Multiaction Transactions Operating on B-Tree Indexes. In

VLDB, 1990.

[MWMS14a] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. Rethinking

Main memory OLTP Recovery. In ICDE, 2014.

[MWMS14b] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stone-

braker. Rethinking Main Memory OLTP Recovery. In ICDE, 2014.

[mys] MySQL. http://www.mysql.com.

[NCKM14] Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. Phase

Reconciliation for Contended In-Memory Transactions. In OSDI, 2014.

[NMK15] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast Serial-

izable Multi-Version Concurrency Control for Main-Memory Database

Systems. In SIGMOD, 2015.

[NNH99] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of

Program Analysis. 1999.

[nuo] NuoDB. http://www.nuodb.com.

151

http://www.mysql.com
http://www.nuodb.com

References

[olt] OLTPBench. http://oltpbenchmark.com/.

[Oraa] Oracle. http://www.oracle.com.

[orab] Oracle Timeline. http://oracle.com.edgesuite.net/

timeline/oracle/.

[ORS+11] Diego Ongaro, Stephen M Rumble, Ryan Stutsman, John Ousterhout,

and Mendel Rosenblum. Fast Crash Recovery in RAMCloud. In SOSP,

2011.

[PAA+17] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin,

Lin Ma, Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah,

Siddharth Santurkar, Anthony Tomasic, Skye Toor, Dana Van Aken, Ziqi

Wang, Yingjun Wu, Ran Xian, and Tieying Zhang. Self-Driving Database

Management Systems. In CIDR, 2017.

[PCZ12] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. Skew-Aware Auto-

matic Database Partitioning in Shared-Nothing, Parallel OLTP Systems.

In SIGMOD, 2012.

[pel] Peloton. http://pelotondb.org.

[PJHA10] Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Aila-

maki. Data-Oriented Transaction Execution. In VLDB, 2010.

[pos] PostgreSQL. http://www.postgresql.org.

[PTJA11] Ippokratis Pandis, Pinar Tözün, Ryan Johnson, and Anastasia Ailamaki.

PLP: Page Latch-Free Shared-Everything OLTP. In VLDB, 2011.

[RDAT16] Kun Ren, Thaddeus Diamond, Daniel J. Abadi, and Alexander Thomson.

Low-Overhead Asynchronous Checkpointing in Main-Memory Database

Systems. In SIGMOD, 2016.

[Ree78] David Patrick Reed. Naming and Synchronization in a Decentralized

Computer System. Ph.D. dissertation, 1978.

152

http://www.oracle.com
http://oracle.com.edgesuite.net/timeline/oracle/
http://oracle.com.edgesuite.net/timeline/oracle/
http://pelotondb.org
http://www.postgresql.org

References

[Ree83] David P Reed. Implementing Atomic Actions on Decentralized Data.

TOCS, 1(1), 1983.

[RG00] Raghu Ramakrishnan and Johannes Gehrke. Database management

systems. 2000.

[RGS12] Karthik Ramachandra, Ravindra Guravannavar, and S Sudarshan. Pro-

gram Analysis and Transformation for Holistic Optimization of Database

Applications. In SOAP, 2012.

[ROO11] Stephen Revilak, Patrick O’Neil, and Elizabeth O’Neil. Precisely Serial-

izable Snapshot Isolation (PSSI). In ICDE, 2011.

[RRW08] Hany E Ramadan, Christopher J Rossbach, and Emmett Witchel.

Dependence-Aware Transactional Memory for Increased Concurrency.

In MICRO, 2008.

[RTA12] Kun Ren, Alexander Thomson, and Daniel J Abadi. Lightweight Locking

for Main Memory Database Systems. In VLDB, 2012.

[SAB+05] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch

Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden,

Elizabeth O’Neil, et al. C-Store: A Column-Oriented DBMS. In VLDB,

2005.

[SFL+12] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas

Peh, and Christof Bornhövd. Efficient Transaction Processing in SAP

HANA Database: The End of a Column Store Myth. In SIGMOD, 2012.

[SHC+09] Nehir Sönmez, Tim Harris, Adrian Cristal, Osman S Ünsal, and Ma-

teo Valero. Taking the Heat Off Transactions: Dynamic Selection of

Pessimistic Concurrency Control. In IPDPS, 2009.

[SLSV95] Dennis Shasha, Francois Llirbat, Eric Simon, and Patrick Valduriez.

Transaction Chopping: Algorithms and Performance Studies. TODS,

20(3), 1995.

153

References

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Hari-

zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural

Era: (It’s Time for a Complete Rewrite). In VLDB, 2007.

[SR86] Michael Stonebraker and Lawrence A. Rowe. The Design of POSTGRES.

In SIGMOD, 1986.

[Ste96] Bjarne Steensgaard. Points-To Analysis in Almost Linear Time. In POPL,

1996.

[TA10] Alexander Thomson and Daniel J Abadi. The Case for Determinism in

Database Systems. In VLDB, 2010.

[TDW+12] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,

Philip Shao, and Daniel J Abadi. Calvin: Fast Distributed Transactions

for Partitioned Database Systems. In SIGMOD, 2012.

[The07] The Transaction Processing Council. TPC-C Benchmark (Revision

5.9.0). http://www.tpc.org/tpcc/spec/tpcc_current.

pdf, June 2007.

[Tho98] Alexander Thomasian. Distributed Optimistic Concurrency Control Meth-

ods for High-Performance Transaction Processing. TKDE, 10(1), 1998.

[tpc] TPC-C. http://www.tpc.org/tpcc/.

[TZK+13] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel

Madden. Speedy Transactions in Multicore In-Memory Databases. In

SOSP, 2013.

[vol] VoltDB. https://www.voltdb.com/.

[WAL+17] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An

Empirical Evaluation of In-Memory Multi-Version Concurrency Control.

In VLDB, 2017.

154

http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpcc/spec/tpcc_current.pdf

References

[WCT16] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan. Transaction Healing:

Scaling Optimistic Concurrency Control on Multicores. In SIGMOD,

2016.

[WGCT17] Yingjun Wu, Wentian Guo, Chee-Yong Chan, and Kian-Lee Tan. Fast

Failure Recovery for Main-Memory DBMSs on Multicores. In SIGMOD,

2017.

[WJ14] Tianzheng Wang and Ryan Johnson. Scalable Logging Through Emerg-

ing Non-Volatile Memory. In VLDB, 2014.

[WJFP15] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. The

Serial Safety Net: Efficient Concurrency Control on Modern Hardware.

In DaMoN, 2015.

[WQCL13] Zhaoguo Wang, Hao Qian, Haibo Chen, and Jinyang Li. Opportunities

and Pitfalls of Multi-Core Scaling using Hardware Transaction Memory.

In APSys, 2013.

[WQLC14] Zhaoguo Wang, Hao Qian, Jinyang Li, and Haibo Chen. Using Restricted

Transactional Memory to Build a Scalable In-Memory Database. In

EuroSys, 2014.

[WSC+15] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. Fast

In-memory Transaction Processing using RDMA and RTM. In SOSP,

2015.

[WT15] Yingjun Wu and Kian-Lee Tan. ChronoStream: Elastic Stateful Stream

Computation in the Cloud. In ICDE, 2015.

[XS15a] Lingxiang Xiang and Michael L Scott. Conflict Reduction in Hardware

Transactions Using Advisory Locks. In SPAA, 2015.

[XS15b] Lingxiang Xiang and Michael L Scott. Software Partitioning of Hardware

Transactions. In PPoPP, 2015.

155

References

[YAC+16] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai

Wu. Adaptive Logging: Optimizing Logging and Recovery Costs in

Distributed In-Memory Databases. In SIGMOD, 2016.

[YBP+14] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and

Michael Stonebraker. Staring Into the Abyss: An Evaluation of Concur-

rency Control with One Thousand Cores. In VLDB, 2014.

[YC16] Cong Yan and Alvin Cheung. Leveraging Lock Contention to Improve

OLTP Application Performance. In VLDB, 2016.

[YD92] Philip S Yu and Daniel M Dias. Analysis of Hybrid Concurrency Control

Schemes for a High Data Contention Environment. TSE, 18(2), 1992.

[YHLR13] Richard M Yoo, Christopher J Hughes, Koonchun Lai, and Ravi Ra-

jwar. Performance Evaluation of Intel® Transactional Synchronization

Extensions for High-Performance Computing. In SC, 2013.

[ZPZ+13] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguil-

era, and Jinyang Li. Transaction Chains: Achieving Serializability With

Low Latency in Geo-Distributed Storage Systems. In SOSP, 2013.

[ZTKL14a] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast

Databases With Fast Durability and Recovery Through Multicore Paral-

lelism. In OSDI, 2014.

[ZTKL14b] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast

Databases with Fast Durability and Recovery Through Multicore Paral-

lelism. In OSDI, 2014.

156

	List of Figures
	List of Tables
	Introduction
	Literature Review
	DBMS Architectures on Modern hardware
	Concurrency Control Protocol
	Main-Memory Concurrency Control Protocol
	Optimistic Concurrency Control
	Program Analysis
	Transactional Memory

	Logging and Recovery
	Checkpointing
	Logging
	Recovery

	Multi-Version Transaction Management
	Concurrency Control Protocol
	Version Storage
	Garbage Collection
	Index Management

	Transaction Healing: A Robust Concurrency Control Protocol on Multi-Cores
	Introduction
	Transaction Healing Overview
	Optimistic Concurrency Control
	Transaction Healing
	Transaction Healing Overview

	Static Analysis
	Runtime execution
	Tracking Operation Behaviors
	Restoring Non-Serializable Operations
	Committing Transactions at Scale
	Guaranteeing Serializability
	Optimizing Dependent Transactions
	Optimizing Independent Transactions
	Supporting Database Operations
	Supporting Ad-Hoc Transactions

	Evaluation
	Existing Performance Bottlenecks
	Scalability

	Summary

	Pacman: A Parallel Logging and Recovery Mechanism on Multi-Cores
	Introduction
	DBMS durability
	Logging
	Checkpointing
	Failure Recovery
	Performance Trade-Offs

	PACMAN Overview
	PACMAN Design
	Static Analysis
	Recovery Execution Schedules
	Dynamic Analysis
	Recovery Runtime
	Ad-Hoc Transactions

	Discussion
	Implementation
	Logging
	Recovery
	Possible Optimizations

	Evaluation
	Logging
	Recovery
	Performance Analysis

	Conclusion

	Multi-Version Transaction Management: An Evaluation on Multi-Cores
	Introduction
	Background
	Overview
	DBMS Meta-Data

	Concurrency Control Protocol
	Timestamp Ordering (MVTO)
	Multi-version Optimistic Concurrency Control (MVOCC)
	Two-phase Locking (MV2PL)
	Serializable Snapshot Isolation (SSI)
	Discussion

	Version Storage
	Append-only Storage
	Time-Travel Storage
	Delta Storage
	Discussion

	Garbage Collection
	Tuple-level Garbage Collection
	Transaction-level Garbage Collection
	Discussion

	Index Management
	Logical Pointers
	Physical Pointers
	Discussion

	Experimental Analysis
	Benchmarks
	Concurrency Control Protocols
	Version Storage
	Garbage Collection
	Index Management

	Discussion
	Summary

	Future Works
	Conclusion
	References

